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Capercaillie (Tetrao urogallus) males in the remnant unlogged forest of NW Russia have

an unusual age structure, with more older than younger birds. In logged forest, the more

normal opposite occurs. A possible explanation involves two-way movement in which

youngsters disperse from unlogged to logged forest and older birds, up to their third

spring, do the reverse. As Capercaillie cocks do not generally attain mating status until

their third spring or later, both movements could be classed as natal dispersal. We develop

a two-compartment population model that shows how this could happen and make a first

approximation of the numbers and distances that would be involved. The model high-

lights gaps in knowledge that should be addressed by further fieldwork.

1. Introduction

Capercaillie, the biggest of grouse, mostly live in

old coniferous forest, where they display together

in spring at traditional mating arenas called leks

(Wegge & Larsen 1987). Some authors consider

these polygamous birds to be mainly sedentary

(Semenov-Tian-Shansky 1960, Romanov 1979,

Potapov 1985). Nonetheless, many Capercaillie

shift between summer and winter ranges, seasonal

movements of adult radio-tagged birds in western

and central Europe averaging 1–2 km with maxi-

mum distances of 10 km or more (Storch 2001).

Elsewhere, in parts of the Urals, Kazakhstan and

Siberia, seasonal migrations of tens of km occur

between winter and summer habitats (Kirikov

1952, Kuzmina 1968, Potapov & Sale 2013). Such

variations are broadly consistent with the “land-

scape mosaic” hypothesis (Rolstad & Wegge

1989), in which longer seasonal movements occur

in coarser-grained landscapes with less habitat in-

terspersion (Hjeljord et al. 2000). Also, there are

suggestions of long-distance irruptive move-

ments, some over 1,000 km (Couturier & Coutu-

rier 1980, Cramp & Simmons 1980, Potapov

1985, Liukkonen-Anttila et al. 2004). In Finland,

Siivonen (1952) considered periodic “migrations

... of a mass character” to be characteristic of Ca-

percaillie and other tetraonid population fluctua-

tions, although the birds were then more numerous

than now.

Borchtchevski & Moss (2014), after Borch-

tchevski (1993), proposed a novel pattern of age-

related movement in a forest landscape much

modified by intensive clear-cutting (Aksenov et

al. 2002). Their hypothesis came from the obser-
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vation that the age distribution of males in remnant

unlogged native forest in NW Russia was unbal-

anced, with more 2- and 3-year-old males than

yearlings in late summer, winter and spring (Table

1). In logged forest, by contrast, they found fewer

old males than yearlings – as expected when some

birds of each age die every year. In explanation,

they proposed a “two-compartment” or “two-

way” model with two streams of movement: 1) re-

cently-reared youngsters emigrating from native

to logged areas in late summer and 2) a reverse

movement of maturing cocks attempting to join

the bigger leks on native areas, most probably in

early spring.

This raises questions about the numbers of

birds expected in each stream and compartment,

and the areas of the latter. We explore these issues

via a mechanistic model, check whether it is con-

sistent with known facts, and use it to provide con-

ditional estimates of bird numbers in each stream

and compartment.

1.2. Population model

1.2.1. Outline

The coarse-grained landscape comprises discrete

tracts of native forest within vast logged areas. The

former supports higher densities of Capercaillie,

sparser and older trees, plus a field layer with

much blueberry (Vaccinium spp.). In logged fo-

rest, trees regrow more densely after clear-cutting

while the field layer is dominated by forbs and

grasses. Also, people – including hunters – occur

much more frequently (Borchtchevski & Moss

2014).

We represent these habitat types as two com-

partments in a population model based on age-spe-

cific population growth rates, with a time step of

one year. It shows how recruitment, movement

and death together result in specific age structures.

Output includes relative numbers of each age class

living in and moving between the two compart-

ments, plus the relative areas of the latter. The

model describes an average situation based on the

age distributions of birds collected in 1980–2008;

it has no annual variation and no explicit represen-

tation of distance, which is considered separately.

We assume for parsimony that population parame-

ters have the same values in both compartments

unless there is contrary evidence.

1.2.2. Definitions

Spring numbers (P) of cocks in native (N) and

logged (L) compartments comprise five age

classes (i, 0–4, the latter including all ages � 4

years). Their numbers (P
Ni

and P
Li
) embrace both

cohort-specific (horizontal) and time-specific

(vertical) age structures (Table 2). Total spring

populations in N and L are P
N0�4

and P
L0�4

.

Age-specific annual population growth rate G

is prospective, for example G
N1

= P
N2

/ P
N1

and G
L1

= P
L2

/ P
L1

. Age-specific annual survival rate S,

also prospective, is the proportion of a given set of

birds that survives from one spring to the next. For

age classes (0, 3 and 4) showing no net movement

between compartments, S = G. For other age

classes (1 and 2), S and G differ due to movement.

We parsimoniously assume that S
N0

= S
L0

= S
0
= G

0
,

S
N1

= S
L1

= S
1
and S

N2
= S

L2
= S

2
.

Movement stream 1 (M
1
) involves movement
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Table 1. Age distribution of cock Capercaillie (percent of total cocks > 11 months old) from logged and na-
tive forest in NW Russia, sampled in 1980–2008. CI = 95% confidence interval. Based on data for late
summer, winter and spring from Fig. 3 of Borchtchevski & Moss (2014). Age class 0 is excluded (see
section 2).

Age class Age in months Logged habitat Native habitat

Percent CI Percent CI

1 12–23 49 40–59 11 7–16
2 24–35 28 22–36 21 16–28
3 36–47 15 11–22 44 36–54
4 > 48 10 6–16 25 19–33



of newly-reared youngsters from N to L during or

after their first summer. Their survival between

late summer and spring, when P
N0

and P
L0

are de-

fined, is S
y
. Stream 2 (M

2
) involves a reverse

movement, from L to N, of age classes 1 and 2 be-

tween springs 1–2 and 2–3 respectively, their cor-

responding survival rates being S
1

and S
2
.

1.2.3. Stream 1

Cocks play no part in rearing young. The number

of hens (P
NB

and P
LB

) and the average number of

young cocks each rears (y) determine the number

reared in N and L respectively. Hens rearing chicks

may be distributed differently from full-grown

cocks but, absent better data, we estimate P
NB

and

P
LB

from P
N0�4

and P
L0�4

. Stream 1 shrinks from

P
NB

× y × e (newly-reared young in N in late sum-

mer and set to emigrate, M
1em

) to P
NB

× y × e × S
y

(the same young after they have emigrated to L and

suffered autumn and winter mortality, M
1im

) where

S
y
= (P

N0
+ P

L0
) / (y × (P

N0�4
+ P

L0�4
)).

The proportion of young that emigrates from N

to L (e) is found as follows:

(spring young in N after emigrants leave) / (spring

young in L after immigrants arrive) = (P
NB

× y × S
y

× (1 – e)) / ((P
LB

× y × S
y
) + (P

NB
× y × S

y
× e)) = P

N0
/

P
L0

so that

(P
NB

× (1 – e)) / (P
LB

+ P
NB

× e) = P
N0

/ P
L0

. (1)

For convenience, we set P
N1

= 1 such that the work-

ing unit is P
N1

. As P
N0

/ P
L0

= P
N1

/ P
L1

,

e = (P
L1

× P
NB

– P
LB

) / (P
NB

× (1 + P
L1

)). (2)

1.2.4. Stream 2

Some birds from age classes 1 and 2 move from L

to N. Hence
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Table 2. Two-compartment population model – definitions. Input parameters needed to run the model are
marked with an asterisk (*).

Basic model

N Native forest compartment
L Logged forest compartment
P Population number
i Age class, from 0 (cocks in their first spring) to 4 (cocks in their fifth spring and older)
P

Ni
Number of cocks in N of age class i. Similarly P

Li
for L

P
NB

Total number of hens in N. Similarly, P
LB

for L
G

Ni
* Age-specific population growth rate P

Ni + 1
/ P

Ni
in N, similarly G

Li
= P

Li + 1
/ P

Li

S
Ni

* Age-specific survival – the proportion of spring cocks in N of age i that survive until spring
i + 1, whether in N or L. Similarly for age i cocks in L. S

i
– joint value for N and L

k
S

* S
0

/ S
1

y * Average number of young cocks per hen in late summer, the same in N and L
S

y
Proportion of y that survives until spring, the same in N and L

e Proportion of young cocks, in N in late summer, destined for emigration to L
M

1em
Number of young cocks set to leave N in movement stream 1

M
1im

Number of M
1em

that survive until spring
M

2em
Number of cocks set to leave L in movement stream 2

M
2im

Number of M
2em

that survive until spring

Incorporate area

k
d

* Spring density of cocks N / L, based on field observations
k

N
* The areal percentage of N used by Capercaillie

A
N

The area of N as a percentage of N + L, with k
N

= 1
A

N1
As A

N
but k

N
< 1. Numbers in N and L remain the same, but the area of N is increased by 1 / k

N

A
N2

As A
N1,

but the area of native forest not used by caper is classed as part of L



P
L1

× (S
1

– G
L1

) = P
N1

× (G
N1

– S
1
), (3)

where G
N1

> S
1

> G
L1

and S
1

< 1. So

P
L1

/ P
N1

= (G
N1

– S
1
) / (S

1
– G

L1
). (4)

Similarly

P
L2

/ P
N2

= (G
N2

– S
2
) / (S

2
– G

L2
). (5)

By definition, P
L1

× G
L1

= P
L2

and P
N1

× G
N1

= P
N2

.

From Eqs 4 and 5

S
2

= S
1

× (G
L1

× G
L2

– G
N1

× G
N2

) (G
L1

× G
N1

) ×

(G
N2

– G
L2

) / (S
1

× (G
L1

– G
N1

)). (6)

Hence, knowing G
L1

and G
L2

and specifying S
1
, we

can estimate the numbers from age classes 1 and 2

that immigrate into N and survive until the follow-

ing spring as

M
2im

= P
L1

× (S
1

– G
L1

) + P
L1

× G
L1

× (S
2

– G
L2

). (7)

Numbers in spring and set to emigrate from L

(M
2em

) are M
2im

/ S
2

1.2.5. Compartment areas

In the two-compartment model, the areal propor-

tion of good Capercaillie habitat N / (N + L) is

A
N

= P
N0�4

/ (P
N0�4

+ k
d

× P
L0�4

), (8)

where k
d
is the spring density of cocks in N / L.

In reality, however, there is a third habitat type.

Unlogged ground with few Capercaillie includes

the centres of open bogs and tundra, while closed

canopy spruce (Picea spp.) with mossy ground

cover (Borchtchevski 1989, 2003; Borchtchevski

& Moss 2008) occupies much of the riverine wa-

tershed. Some native tracts (e.g., the one northeast

of Plesetsk in Fig. 1 of Borchtchevski & Moss

2014) consist largely of monotonous, uniform and

relatively dense spruce forests likely to support

low densities of Capercaillie. Also, snow melt is

late in spruce forests, especially in the extreme

north east of NW Russia (Mil’kov & Gvozdetskiy

1976), so making the snow-free season too short

for nesting and chick rearing. We therefore assume

that a proportion k
N

of real unlogged forest is used

by Capercaillie and equivalent to compartment N,

while other unlogged ground is unused. Thus, the

observed (Aksenov et al. 2002) areal proportion of

all unlogged forest including N and “other

unlogged ground” becomes

A
N1

= (P
N0�4

/ k
N
) / (P

N0�4
+ k

d
× P

L0�4
). (9)

Alternatively, if Capercaillie use “other unlogged

ground” as if it were L,

A
N2

= (P
N0�4

/ k
N
) / (P

N0�4
+ k

d
× P

L0�4
– P

N0�4
×

(1 – 1 / k
N
)). (10)

1.2.6. Input parameter values

To get numerical output from the model we input

age-specific values for G and S plus a value for y.

Then, to estimate the relative areas of the two com-

partments, we input values for k
d
and k

N
. Up to this

point, output is measured relative to P
N1

. To get

output in whole numbers we note that P
N1

is a de-

fined proportion of P
N0�4

and assign a numerical

value to P
N0�4

.

Borchtchevski & Moss (2014) provided three

season-based (summer–summer, winter–winter

and spring–spring) estimates for each of the age-

specific population growth rates G
N1

, G
N2

, G
L1

and

G
L2

(their Table 3) plus (their Table 4) G
N3

and G
L3

,

which applied to all ages � 3. They cautioned,

however, that their estimates of G
N0

and G
L0

(and

hence our G
0
) were flawed by sampling biases in

age class 0. Other than G
0
, each of our “original” G

values is a mean of their three season-based esti-

mates.

Age-specific annual survival rates S are the

same as G for some age classes. Model age classes

4, 3 and 0 show no net movement between com-

partments such that S
N3

= G
N3

and S
L3

= G
L3

. Simi-

larly, S
0
= G

0
but, having no direct measurement of

either, we put S
0
= k

S
× S

1
where k

S
is a constant ini-

tially set equal to 1. Age classes 1 and 2 take part in

stream 2 so S
1
� G

1
and S

2
� G

2
, which means that

we have no direct measurements of S
1
and S

2
. Eq.

6, however, defines S
2
as a function of S

1
, G

L1
, G

L2
,

G
N1

and G
N2

. Therefore, knowing G
L1

, G
L2

, G
N1

and

G
N2

(previous paragraph), we ran the model with a
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range of values for S
1
– as detailed at the end of this

section.

The median number of chicks reared per hen in

17 studies through much of the birds’ range was

1.6 (Moss et al. 2000). Studies in NW Russia indi-

cate an average of just over two (Desbrosses et al.

1992, Borchtchevski 1993 & unpubl., Borch-

tchevski et al. 2003) while their sex ratio tends to

favour females, in NW Russia (Borchtchevski

unpubl.) as elsewhere (Hörnfeldt et al. 2001). Our

initial value for y is therefore 1. The density of both

sexes combined in N has been estimated as ~ 2 /

km
2

and in L ~ 0.6 / km
2

(Borchtchevski & Moss

2014) so that, assuming a 50:50 sex ratio, k
d
~ 3.33.

We discuss densities (section 4.1).

About 25% of remnant intact native forest

landscapes in Russia comprise open ground

(Aksenov et al. 2002), and dense native spruce

tracts (section 1.2.5) are likely to support low den-

sities of Capercaillie. We therefore estimate k
N

as

0.5, bearing in mind that this is likely to change

with better information. Next, the proportion of

remnant native forest (Aksenov et al. 2002) in the

studied part of NW Russia includes that in the

Archangelsk Region, the Nenets Autonomous

District, and the Republics of Komi and Karelia.

This amounts to ~ 200,000–250,000 km
2
of a total

forest area of ~ 810,000–860,000 km
2
(25–29%).

With k
N

= 0.5, the equivalent of model compart-

ment N is ~ 112,500 km
2
. For simplicity, when il-

lustrating model output in concrete bird numbers

we round this to 100,000 km
2
. As spring cock den-

sity in N is ~ 1 / km
2

(previous paragraph), such

output is based on 100,000 spring cocks in N and

100,000 × P
L0�4

/ P
N0�4

in L.

Eq. 6 defines S
2

as a function of S
1
, G

L1
, G

L2
,

G
N1

and G
N2

. For each realistic value of S
1
we used

three criteria to exclude unrealistic values of S
2
and

to investigate whether it was necessary to vary the

original estimates for G
N1

, G
N2

, G
L1

or G
L2

. We kept

G
N3

, G
L3

, y, k
S
, k

d
and k

N
as above.

– First, four telemetry studies in western and

central Europe (Storch 2001) showed average

survival rates of cocks > 12 months old to be

0.70–0.84. Hence we aimed for values of S
1

and S
2
within a biologically plausible range of

0.65–0.90.

– Second, we know of no evidence that S
1
differs

materially from S
2
and so a model with S

1
� S

2

over the range 0.65–0.90 was preferred.

– Third, the areal proportion of unlogged forest

(A
N1

or A
N2

) should be ~ 25–29% (Aksenov et

al. 2002).

Sensitivity analyses then varied the four G esti-

mates by ± 20%, one at a time, for each value of S
1

in the range 0.65–0.90. Outputs for S
2
, A

N1
and A

N2

were checked against the criteria, so pointing to

parameter sets with realistic output. Below, we

give illustrative output using one such parameter

set. For simplicity, we preferred a set with not

more than one G value altered from the original.

1.3. Distance model

We consider movement distances via a distinct,

spatially explicit two-compartment model com-

prising four concentric circles with radii n < 1 < g <

f. Compartment N includes the inner disc and adja-

cent annulus, compartment L the outer two annuli.

Within N and L respectively, the two sub-compart-

ments are equal in area and birds are positioned

randomly. On average, a random selection of bird

positions within a compartment has its median on

the circle separating sub-compartments. The me-

dian migrant moves between random positions on

the two separators, a straight-line distance be-

tween g – n and g + n, average g. Hence n = �0.5, g

= �[(1 / 2A
N
) + 0.5] and f = �(1 / A

N
). The average

distance moved is �[(1 / 2A
N
) + 0.5] × (radius of

native forest compartment if�1). For realistic esti-

mates, substitute A
N1

or A
N2

for A
N
.

2. Statistical methods

Table 1 shows output from a simplified analysis of

the data in Fig. 3 of Borchtchevski & Moss (2014).

We followed their modelling approach but

dropped age class 0 (< 12 months), which suffered

from season-related sampling biases. Also, we

combined results for their three seasons (summer,

winter, spring) as follows. The unit of analysis (in-

dividual bars in their Fig. 3) in a generalised linear

mixed model (GLMM) was the number of cocks

categorised by age class (1–4), study area (two in

logged, two in native habitat) and season. The

Moss & Borchtchevski: Movement of Capercaillie males in NW Russia 5



GLMM, with Poisson distribution and log link,

was corrected for any extra-dispersion. The re-

sponse variable was the number of cocks in each

unit of analysis offset by the natural logarithm of

the total number of cocks in all four age classes,

categorised by study area and season. Fixed effects

were age class, habitat and season. Random effects

included main year and main method of sampling

(Borchtchevski & Moss 2014) but, as each

covariance parameter estimate was < 0, the

GLMM reverted to a generalised linear model

(GLM). Also, season (F
2,25

= 0.29, P = 0.75) and its

interactions with habitat (F
2,25

= 0.14, P = 0.87)

and age class (F
6,25

= 1.09, P = 0.40) were insignifi-

cant (SAS [ver. 9.1] type 3 [partial] F-test). Hence

we dropped season and used a GLM with fixed ef-

fects habitat (F
1,36

= 0.20, P = 0.65) and age class

(F
3,36

= 3.2, P = 0.034), plus their interaction (F
1,36

= 29.5, P < 0.0001), to estimate the percentages

shown in Table 1.

We used output from the same GLM when

simulating approximate 95% confidence intervals

(CI) for modelled population and stream sizes.

GLM output included the mean and standard error

(SE) of the proportion of age class i (where i = 1–4)

in each habitat (A
Ni

or A
Li
). We used these, in effect,

to reconstitute a normal distribution for each age

class, from which we selected and ranked 10,000

random samples (rsA
Ni

or rsA
Li
). Simulated CI

were given by ranks 250 and 9,750. For a more

complex parameter such as G
N1

= P
N2

/P
N1

= A
N2

/A
N1

we simulated rsA
N2

/rsA
N1

10,000 times and thence

calculated its simulated SE. Simulated means typi-

cally differed slightly from the equivalent value in

the illustrative model and so, for calculations

based on this model (for example, rsG
N1

– rsS
1
),

we used the illustrative central values together

with the simulated SEs. Variations in survival S
1

were simulated via logit rsS
1
= log

e
(S

1
/ (1 – 0.80) +

rs(0.9)), which avoided rsS
1

> 1.0 and gave S
1

=

0.80 (CI 0.69–0.85, which embraced the observed

range of 0.70–0.84 (Storch 2001)). We were as un-

certain about the mean value of y as about its vari-

ance and so used a uniform distribution in the

range 0.6–1.4 to generate rs(y). Output was for

numbers of birds in P
N1

units, which we converted

to birds per 100,000 spring cocks in N (section

1.2.6). As these results involve numbers of birds

but not compartment areas, they are unaffected by

k
d
and k

N
. Fuller details of CI simulations are in the

Appendix.

3. Results

Age structures generated by the model depend on

age-specific population growth rates G, them-

selves based on those previously estimated

(Borchtchevski & Moss 2014) from observed age

distributions (Table 1). It is therefore inevitable

that modelled age structures (Table 5) resemble

observed ones. Our primary aim is to explore how

big relative population sizes (P
N0�4

and P
L0�4

) and

movement streams (M
1

and M
2
) must be to gener-

ate the salient age structure in N. We start by

checking which values of G and S conform with

the three reality criteria (section 1.2.6) and the con-

straints imposed by the model.
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Table 3. Sensitivity analysis: how variations in G (central value ± 20%) influence the relationship between
S

1
(survival of age class 1) and S

2
(Eq. 6).

Input Output S
2

S
1

Central G values G
N1

G
N2

G
L1

G
L2

0.65 0.68* 0.63 0.64–0.63 0.61–0.66 0.81–0.43 0.53–0.74
0.70 0.79* 0.70 0.72–0.69 0.66–0.75 0.86–0.52 0.61–0.80
0.75 0.89* 0.76 0.78–0.75 0.69–0.83 0.90–0.60 0.68–0.85
0.80 0.98* 0.81 0.84–0.80 0.73–0.90 0.94–0.67 0.74–0.89
0.85 1.06* 0.86 0.89–0.84 0.76–0.96 0.98–0.73 0.79–0.93
0.90 1.13* 0.90 0.94–0.88 0.78–1.02 1.01–0.78 0.84–0.96

* With G
N1

= 2.1, G
N2

= 1.8 (original value), G
L1

= 0.61, G
L2

= 0.57. In the next column, central G values were the same except
that G

N2
= 1.3 (illustrative model). There was no effect of G

N3
(0.42) and G

L3
(0.37) on S

2
.



3.1. Realistic parameter values

Equation 6 defines S
2
as a function of S

1
, G

N1
, G

N2
,

G
L1

and G
L2

. Thus, for a given set of G values, solu-

tions to Eq. 6 comprise paired values of S
1
and S

2
.

Unconstrained, this allows S
2
to differ widely from

S
1
, which is unrealistic (section 1.2.6). For exam-

ple, given the original G values (Table 3), the solu-

tion when S
1
= S

2
is 0.63, such that A

N1
� A

N2
= 0.02

or 2%. Above 0.63, S
2
increases twice as fast as S

1

(Table 3), such that when S
1

> 0.81, S
2

> 1.00,

which is impossible. The original G set therefore

fails all three reality criteria, the second two badly,

and so we alter it minimally. The sole single adjust-

ment that fulfils the three criteria is to decrease

G
N2

. Reducing it from the original 1.8 to 1.3 gives

values of S
1

and S
2

agreeing within 0.02 over the

range 0.65–0.90 (Table 3). Versions of the model

with G
N2

= 1.3 and S
1

varying from 0.80 to 0.85

each give similarly realistic output for A
N1

or A
N2
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Table 4. Sensitivity analysis for illustrative model: effect of varying S
1

(survival of age class 1) on S
2
, popu-

lation size, relative compartment size, first-winter survival and movement streams.

Input Output

S
1

S
2

P
N0�4

P
L0�4

A
N

A
N1

A
N2

S
y

e M
1em

M
2em

0.65 0.63 9.32 105.9 2.0 4.1 4.2 0.39 0.59 5.49 4.44
0.70 0.70 9.24 55.9 4.7 9.5 9.9 0.36 0.57 5.30 3.79
0.75 0.76 9.16 36.8 7.5 15.0 16.3 0.34 0.56 5.11 3.28
0.80 0.81 9.07 25.0 10.4 20.9 23.3 0.31 0.54 4.92 2.88
0.85 0.86 9.00 18.4 13.4 26.9 31.0 0.28 0.53 4.74 2.54
0.90 0.90 8.92 13.5 16.5 33.0 39.5 0.25 0.51 4.55 2.26

Population size and movement streams in P
N1

units.

Table 5. Sensitivity analysis for illustrative model: how variations in G (central value ± 20%) influence age
structures in N and L, movement streams M

1
and M

2
and the proportion of native forest A

N
.

Parameter Central G
N1

G
N2

G
L1

G
L2

P
N0

1.25 – – – –
P

N1
1.00 – – – –

P
N2

2.10 1.68–2.52 – – –
P

N3
2.73 2.18–3.28 2.18–3.28 – –

P
N4

1.98 1.58–2.37 1.58–2.37 – –
P

N0�4
9.06 7.70–10.4 8.12–10.0 – –

P
L0

8.55 5.79–11.3 – 5.21–23.9 –
P

L1
6.84 4.63–9.05 – 4.17–19.1 –

P
L2

4.17 2.83–5.52 – 2.03–14.0 –
P

L3
2.38 1.61–3.15 – 1.16–7.98 1.90–2.85

P
L4

1.40 0.95–1.85 – 0.68–4.68 1.12–1.68
P

L0�4
23.3 15.8–30.9 – 13.3–69.7 22.6–24.1

e 0.54 0.46–0.61 0.51–0.57 0.52–0.57 0.55–0.53
S

y
0.30 0.30–0.30 0.31–0.29 0.29–0.32 0.31–0.30

M
1em

4.92 3.52–6.31 4.10–5.75 4.74–5.14 5.02–4.83
M

2em
2.88 1.95–3.81 – 2.24–5.82 3.46–2.29

A
N

10.4 12.8–9.2 9.5–11.4 17.0–3.76 10.8–10.1
A

N1
20.9 25.5–18.4 18.9–22.8 34.1–7.51 21.5–20.3

A
N2

23.3 29.3–20.3 20.9–25.7 41.1–7.81 24.1–22.6

– = No change from central value as heading G not used in calculating this output.
Central values G

N1
= 2.1, G

N2
= 1.3, G

L1
= 0.61, G

L2
= 0.57, G

L3
= 0.37 with S

1
= 0.80. S

2
was held constant at the value found us-

ing these central values. All results relative to P
N1

= 1. Effects of variations in G
N3

and G
L3

, which were less germane, can be seen
in Table 7 plus the Excel spreadsheet provided as online supplementary material.
M

1em
stream 1 emigrants from N, M

2em
stream 2 emigrants from L.



(Table 4). We therefore adopt an illustrative ver-

sion of the model with G
N1

, G
L1

and G
L2

as in the

originalG set, G
N2

= 1.3 and S
1
= 0.80. Readers may

investigate other parameter values via the Excel

spreadsheet provided as online supplementary

material.

3.2. Population dynamics in N and L

The unbalanced age structure in N is maintained

largely by stream 2 (M
2
). A notable feature of

model output is that population size P
L0�4

varies

much more than P
N0�4

, especially with S
1
(Table 4)

and G
L1

(Table 5). Broadly, a fairly constant P
N0�4

requires a fairly constant M
2

to maintain its age

structure: hence if M
2

as a proportion of P
L0�4

de-

clines then P
L0�4

itself must increase.More specifi-

cally, M
2
depends (Eq. 7) partly on differences be-

tween S and G in age classes 1 (S
1
– G

L1
) and 2 (S

2
–

G
L2

) and partly on the numbers of birds in these

classes (P
L1

and P
L2

= G
L1

× P
L1

). Hence decreases

in S
1

and S
2

tend to depress M
2

but this is counter-

acted by increases in P
L1

(Eq. 4) and P
L2

(Eq. 5) and

consequently P
L0�4

. Again, decreases in G
L1

tend

to depress M
2

(via its effect on age class 2, Eq. 7)

but this is offset by increases in P
L1

(Eq. 4) and so

P
L0�4

.

The area of forest needed to support P
L0�4

de-

pends not only upon bird numbers but also upon

their density. Thus A
N

falls as P
L0�4

/ P
N0�4

rises

(Eq. 8) and falls further as k
d

increases (Table 6).

The fact that native forest includes some ground

with low densities of Capercaillie is modelled by

A
N1

or A
N2

increasing as k
N

falls.

The unbalanced age structure in N involves rel-

atively low P
N0

and P
N1

, which occur partly be-

cause M
2

enhances P
N2

and P
N3

. The hypothesis

(Borchtchevski & Moss 2014) also suggests that

P
N0

and hence P
N1

are further depressed by M
1
, em-

igration of newly-reared young. In the model, M
1

and M
2
are calculated independently of each other.

Thus, the number of youngsters reared in N is

P
N0�4

× y and the number emigrating in stream 1 is

M
1em

= P
N0�4

× y × e. Overwinter mortality S
y
is de-

termined by the number of surviving young (P
N0

+

P
L0

) and not vice versa. Hence variations in y im-

pact M
1em

and S
y
(Table 6) but not M

1im
, whilevaria-

tions in k
S
affect M

1im
and S

y
but not M

1em
.

Model youngsters reared locally in L outnum-

ber the immigrants M
1im

. Output values of e and S
y

are about 0.5 and 0.3 respectively and vary little

when S (Table 4) or G (Table 5) are altered; also

P
N0�4

< P
L0�4

. Thus, in the illustrative model, M
1im

comprises only 17% of P
L0

. It is therefore possible

that all surviving stream 1 youngsters return from

L to N in stream 2 (M
1im

= 1.49 < M
2em

= 2.88, in P
N1

units). An alternative scenario is that stream 2, re-

flecting the provenance of the population on the

ground, is 17% native-reared. In this case 34% of

the native-reared cocks surviving on L join stream

2, these comprising only 10% of the original emi-

grants M
1em

. In either scenario, the illustrative

model suggests that stream 2 must include some

cocks reared on L. However, the wide CI for each

stream (Table 7) throw doubt on this conclusion,

such that stream 2 could comprise solely stream 1

returnees or none.

Age classes 3 and 4 remain in their current
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Table 6. Sensitivity analyses for illustrative model: impacts of variations in k
S
, y, k

d
and k

N
(central value ±

20%).

Output Input

Central k
S

y k
d

k
N

P
N0�4

9.06 9.37–8.85 – – –
P

L0�4
23.3 25.5–21.9 – – –

S
y

0.30 0.35–0.27 0.38–0.25 – –
M

1em
4.92 – 3.94–5.91 – –

M
1im

1.49 1.73–1.31 – – –
A

N
10.4 9.9–10.8 – 12.7–8.8 –

A
N1

20.9 19.9–21.6 – 25.4–17.7 26.1–17.4
A

N2
23.3 22.1–24.2 – 29.1–19.4 30.9–18.7

– = No effect as heading not used in calculating this output.



compartments and suffer annual mortality (~ 0.60,

Borchtchevski & Moss 2014) much higher than in

the western European literature (~ 0.20, Storch

2001). Due to these losses and stream 2 emigra-

tion, they form only 16% of the population in L

(Table 5) but, bolstered by stream 2 immigration,

52% of that in N. If annual mortality were ~ 0.20

the respective values would be 36% and 74%.

An alternative interpretation of the high losses

borne by age classes 3 and 4 is that some cocks,

failing to gain or retain lekking territories, retire to

“other unlogged ground” (section 1.2.6), i.e., to a

third type of compartment where they survive as

well as in western or central Europe. To model this,

we keep G
N3

and G
L3

as they are in the illustrative

model but set S
3
= 0.80, such that the differences S

3

– G
N3

and S
3

– G
L3

are due to retirees. In this case,

with k
N

= 0.5, retiree density on the poor habitat of

the third compartment would be 1.64 times as big

as total cock density in good habitat, which is ab-

surd.

3.3. Known unknowns

The model parameters mainly determining relative

population and stream sizes are G, S and y. Each is

estimated with some uncertainty or variability.

Table 7 expresses the combined result of these un-

certainties as CI, starting with a fixed number of

100,000 spring cocks in N (section 1.2.6). These

approximate CI, conditional upon the relative po-

pulation sizes and parameter values of the illustra-

tive model, are for mean values and not for annual

fluctuations about these means.

Further uncertainties occur when converting

numbers to areas via k
d

and k
N
. We have insuffi-

cient information to estimate CI for forest areas

and so characterise the effects of varying k
d
and k

N

by sensitivity analyses (Table 6).

3.4. Distance moved

As an example, we take the 5,000 km
2
block of na-

tive forest comprising part of the Onega-Pudoga

massif within the Archangelsk region (Borch-

tchevski 1993), assuming k
N

= 0.5 and A
N

= 0.25

(25%). Apply the distance model to a disc of 5,000

km
2
: the median straight-line distance moved dur-

ing streams 1 or 2 is then �[(1 / 2 × 0.25) + 0.5] ×

(radius of disc of 5,000 km
2
) = 63 km.

4. Discussion

Capercaillie movements remain poorly under-

stood. Whereas older literature describes long-dis-

tance movements including large flocks of birds

(Introduction), studies of radio-tagged individuals
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Table 7. Modelled cock spring numbers and movement streams (in thousands) per 100,000 cocks (100,000
km

2
of good native Capercaillie habitat) with approximate 95% confidence intervals (CI). The proportion of

simulations < 0 gave approximate 1-tailed probabilities that each stream did not exist (H
0

= 0 for each
stream). Thus, conditional on the illustrative model and the relative population sizes that it predicts, P =
0.013 and 0.0002 for streams 1 and 2. Respective equivalents for the high survival model were P = 0.0035
and 0.0002.

Compartment Population segment Model

Illustrative* High Survival**

Number CI Number CI

Native Spring cocks 100 – 100 –
Logged Spring cocks 258 135–380 181 113–247
Migrants*** Stream 1 54 12–94 29 6–51

Stream 2 32 13–53 17 7–28

* Illustrative model G
N3

= 0.42, G
L3

= 0.37.
**High survival model G

N3
= G

L3
= S

3
= 0.80, consistent with the western European literature (Storch 2001). Other inputs as for il-

lustrative model.
*** Just as movement begins. For stream 1, output S

y
(illustrative) = 0.30 (CI 0.25–0.46), S

y
(high survival) = 0.21 (0.09–0.29).



in western and central Europe plus northern Russia

(Hjeljord et al. 2000, Storch 2001) show a fairly

sedentary pattern. Here we explore evidence for a

hypothetical form of two-way movement in the

largely anthropogenic forest landscape of NW

Russia. The key evidence is age distributions

(Table 1) that entail age-specific annual popula-

tion growth rates G
N1

and G
N2

greater than unity

(Borchtchevski & Moss 2014). These would be

very unlikely in a closed population and strongly

imply movement.

The model is quantitatively consistent with

known facts, including vital rates of Capercaillie

and the proportion of old forest remaining after

logging (section 4.1.). Some parameter estimates

need more study to substantiate them, as do the

postulated movement streams themselves (section

4.2.) and the habitat configurations that may en-

gender them (section 4.3.). To what extent the vast

scale and intensive clear-cutting of NW Russian

forest is necessary for such movements remains

unclear. The model describes movements, not

their ecological rationale, which we nonetheless

discuss (section 4.4.).

4.1. Parameter values

Model streams 1 and 2 depend primarily on

growth rates G
L1

, G
L2

, G
N1

, G
N2

and survival rates

S
1
, S

2
. The values used for these parameters are

quite well supported (Borchtchevski & Moss

2014, Storch 2001), as are those for y (section

1.2.6), G
L3

and G
N3

(Borchtchevski & Moss 2014).

Although k
S

represents a dearth of information

about S
0
, the sole impact of plausible variations in

k
S

on model movements is to vary the size of

stream 1 (Table 6).

The secondary parameters k
d

and k
N
, which

convert population sizes to areas of ground, are es-

timated from limited evidence. Thus k
d
depends on

transect-based measurements of spring density

(sources cited in Borchtchevski & Moss 2014, me-

thod in Borchtchevski 1987) at three sites in native

(8 site-years during 1982–2001) and four in

logged forest (7 site-years during 2001–2006) and

we sanguinely take their respective means to re-

present ~ 400,000 km
2

of NW Russian forest. Our

estimate of k
N

is yet more tenuous (section 1.2.6).

As it stands, the density of Capercaillie in logged

forest in NW Russia is sparsely documented

(Borchtchevski 2011), as is the proportion of na-

tive forest that comprises good Capercaillie habi-

tat. Although densities, and hence k
d
, affect con-

clusions about the actual numbers of birds in-

volved (Table 7), they have no impact on the rela-

tive numbers in each stream or compartment.

For a given set of annual growth rates G
L1

, G
L2

,

G
N1

and G
N2

, the model requires specific matches

between values of annual survival (S
1
� S

2
) and the

proportion of intact native forest (A
N1

or A
N2

), as

observed (section 1.2.6). The absence of such

matching in real-world observations would falsify

the hypothesis – it survives this test but with the

foregoing caveats about k
d

and k
N
.

4.2. Pointers for fieldwork

Movements consistent with streams 1 and 2 were

not detected by the two radio-marking studies

hitherto done in NW Russia (Beshkarev et al.

1995, Wegge et al. 2003, 2005, Hjeljord et al.

2011). Both tackled other questions, however, and

involved catching cocks at leks in native forest,

which would sample neither stream (Borch-

tchevski & Moss 2014). Studies designed specifi-

cally to detect these streams would have a better

chance, but should anticipate that not all cocks join

either stream. For example, in the illustrative

model only about 26% of cocks of the appropriate

age (P
L1

and P
L2

) join stream 2 (Table 5). Again,

stream 1 birds returning in stream 2 may comprise

only 10% or as many as 100% of the original emi-

grants from N (section 3.2).

Model youngsters suffer heavy overwinter

mortality (Table 4 & 7), perhaps because many are

killed by predators (Rykova et al. 2012) and hunt-

ers. Nonetheless, illustrative model output of S
y
=

0.30 seems low despite few comparable estimates

in the literature. In Scotland, however, Moss et al.

(2000) found annual (September–August) sur-

vival of radio-tagged juveniles to be 0.50. If we

take the value of S
y
= 0.30 to apply to the 6 months

September–February and �S
0

to cover the next 6

months, we get a juvenile annual survival rate of

0.30 × �0.80 = 0.27 in NW Russia, considerably

lower than in Scotland. In NW Russia, however,

there are many more species of predator than in

Scotland, where predator-killing is routinely prac-
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ticed by gamekeepers (Summers et al. 2004).

Moreover, if we set y = 0.75 and k
S
= 0.5 then mod-

elled juvenile survival in NW Russia becomes

0.62 × �0.80 = 0.55. Clearly, the survival of juve-

nile Capercaillie needs further study.

A related caveat is that hen numbers P
NB

and

P
LB

, used in calculating S
y
, are estimated from

P
N0�4

and P
L0�4

(section 1.2.3). Breeding hens,

however, might be fewer than spring cocks be-

cause some hens die between spring and late sum-

mer; the adult sex ratio in spring might favour ei-

ther sex; the adult sex ratio might differ between N

and L; and some hens that get mated in N might

rear their chicks in L, or vice versa. All these un-

certainties could impact M
1em

and hence S
y
, though

not M
1im

or M
2
. Plainly, hen numbers and move-

ment need more study.

The growth rates G used here come from data

collected in 1980–2008 and may differ when aver-

age density in the north of the Russian Plain is

lower. For example, if excessive hunting leads to

low adult survival (e.g., S
L1
�G

L1
) in logged forest,

stream 2 should not occur (Borchtchevski 1993).

Similarly, if stream 1 is density-dependent, it may

not occur if numbers in native forest are depressed.

4.3. Distances moved

The illustrative estimate of 63 km as the median

distance moved by birds shifting to and from a

5,000 km
2
block of native forest is plainly simplis-

tic. Forest blocks are not disc-shaped, dispersal

does not occur equally in all directions, and birds

are not distributed randomly. Nonetheless it con-

firms that stream movement distances are likely to

be in tens of km, consistent with Borchtchevski &

Moss (2014) and with the seasonal migrations be-

tween summer and winter habitat shown by some

populations in the Urals, Kazakhstan and Siberia

(Introduction).

The intensive clear-cutting that created the

logged forest habitat type has been associated with

population declines (Storch 2001). Without log-

ging there could be no movement between logged

and unlogged habitat. Nonetheless, this may be a

special case of age-related, two-way movement

between poorer and better habitats. As with sea-

sonal movements (Hjeljord et al. 2000), the dis-

tances involved might vary with habitat configura-

tion at the landscape scale. Most likely, Caper-

caillie have an innate capacity for seasonal or age-

related movement, ready to be elicited by apt natu-

ral or man-made landscapes. Certainly, more data

on habitat-related densities and movements, and

the causes of movement generally, are needed to

test this generalisation.

4.4. Implications for population dynamics

In the model (Eq. 4), a decrease in the proportion

of native forest (A
N
, A

N1
or A

N2
) went along with a

decrease in survival (S
0
, S

1
and S

2
). This agrees

with the perception that large-scale clear-cutting is

detrimental to Capercaillie (Storch 2007), al-

though the model allows two complementary in-

terpretations. First, with poorer survival, a bigger

area of logged forest might be needed to maintain

the observed age structure in a given area of native

forest. Second, more logging might cause poorer

survival. This might be due less to vegetation

change than to the extra disturbance and hunting

that follows logging in NW Russia (Novikov

1978).

Our illustrative values of S
1

and S
2

(0.80 and

0.81) are consistent with western European litera-

ture (Storch 2001), but our estimates of S
N3

(= G
N3

)

and S
L3

(= G
L3

) are unprecedentedly low at ~ 0.40

(Table 5). The possibility that S
3

> G
3

because

some subordinate cocks retire to a third compart-

ment “other unlogged ground” cannot be com-

pletely dismissed; in the illustrative model, how-

ever, for such birds to boost S
3
to 0.80 their density

in the putative third compartment would have to be

greater than total cock density in N (section 3.2).

This is highly implausible. It would, moreover,

make little difference to conclusions about the ex-

istence of streams 1 and 2 (Table 7).

In the illustrative model, stream 2 involved

more birds than stream 1 returnees (section 3.2,

Table 5) and therefore included some reared in L.

Indeed, the model embraces the possibility that ex-

tra cocks embark upon stream 2, but return to L af-

ter failing to establish themselves in N. Thus native

forest may attract dispersing cocks independently

of their provenance. On the other hand, the wide

CIs (Table 7) make it possible that all stream 2

birds are returnees. As Capercaillie cocks do not

generally attain mating status until their third
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spring or later (Storch 2001) streams 1 and 2 can

both be classed as natal dispersal. In this case, the

average natal dispersal distance of returnees could

be much less than their round trip distance, and so

comparable with natal dispersal distances in other

Capercaillie populations. Perhaps such move-

ments developed from the shorter movements of

cocks, documented in Norway (Gjerde & Wegge

1989), whereby subadult males are displaced from

lek centres by adults and retreat a few hundred m to

peripheral zones between leks. In both situations,

despite the different distances moved, subadults

could be avoiding the more dominant adults until

they are mature enough to compete at leks.

A compatible suggestion (Borchtchevski &

Moss 2014) is that movements from logged to na-

tive forest are driven by a struggle for territories at

big leks, accompanied by more fighting and higher

mortality. The connotation that larger leks are also

more attractive to females has been more studied

in black grouse (Tetrao tetrix) than in Capercaillie.

Larger black grouse leks have many more female

visits and copulations, leading to a higher average

male mating success (Alatalo et al. 1992). Also,

there is evidence that female black grouse use

components of fighting behaviour as cues for mate

choice: a cock that fights more and has better fight-

ing success gains more copulations (Hämäläinen

et al. 2012). If Capercaillie are similar, stream 2

may be an adaptive behaviour pattern whereby

dispersing cocks move out of logged areas and aim

to establish themselves as alpha cocks at the bigger

leks in native forest, so increasing their lifetime fit-

ness despite shorter lives. Then again, they might

be seeking refuge from the greater frequency of

hunters in logged forest. Alternatively, stream 2

might simply comprise stream 1 emigrants return-

ing to their natal areas once they are old enough to

compete there. Well-designed studies of electroni-

cally-tagged birds could help to resolve such com-

plementary possibilities.
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Metsokukkojen ikärakenne

ja liikehdintä Luoteis-Venäjällä

– kahden lokeron populaatiomalli

Luoteis-Venäjän hakkaamattomissa metsissä met-

sokukoilla on harvinainen ikärakenne, siten, että

vanhoja lintuja on enemmän kuin nuoria. Haka-

tuissa metsissä vallitsee tyypillisempi, vastakoh-

tainen tilanne. Mahdollinen selitys havaitulle ikä-

rakenteelle on kaksisuuntainen liikehdintä, jossa

nuoret siirtyvät hakkaamattomasta hakattuun met-

sään, kun taas vanhemmat linnut – kolmanteen ke-

vääseen asti – liikehtivät päinvastaiseen suuntaan.

Koska metsokukot eivät tyypillisesti pariudu en-

nen kolmatta kevättään, molemmat liikehdinnät

ovat luokiteltavissa syntymälevittäytymiseksi.

Kehitämme kahden lokeron populaatiomallin, jo-

ka osoittaa miten liikehdintä voi tapahtua ja teem-

me suurpiirteiset arviot mallin numeerisille arviol-

le ja etäisyyksille. Malli korostaa sitä, että tietä-

myksessämme on selviä aukkoja, joiden täyttämi-

nen vaatisi lisää maastotutkimuksia.

References

Aksenov, D., Dobrynin, D., Dubinin, M., Egorov, A.,

Isaev, A., Karpachevskiy, M., Lestadius, L., Potapov,

P., Purekhovskiy, A., Turubanova, S. & Yaroshenko,

A. 2002: Atlas of Russia’s intact forest landscapes. —

Global Forest Watch, Moscow.

Alatalo, R.V. 1992: Evolution of black grouse leks: female

preferences benefit males in larger leks. — Behavioral

Ecology 3: 53–59.

Beshkarev, A.B., Blagovidov, A., Teplov, V. & Hjeljord,

O. 1995: Spatial distribution and habitat preference of

male Capercaillie in the Pechora-Illych Nature Reser-

ve in 1991–92. — In Proceedings of the 6
th

Internatio-

nal Grouse Symposium (ed. Jenkins, D.): 48–53.

World Pheasant Association & Instituto Nazionale per

la Fauna Selvatica, Udine, Italy.

Borchtchevski, V.G. 1987: Material on seasonal popula-

tion dynamics of capercaillie. — In Biological basis

for the protection and reproduction of hunting resour-

ces (ed. Nazarov, A.A.): 5–13. Moscow. (In Russian)

Borchtchevski, V.G. 1989. Seasonal preference of habitats

by Capercaillie. — In Proceedings of All-Soviet-

Union conference on cadastre and counting of the ani-

mal world. Part 2: 338–340. Bashkir Book Publishers,

Ufa. (In Russian)

Borchtchevski, V.G. 1993: Population biology of the ca-

percaillie. Principles of the structural organisation. —

Central Science Laboratory of Game Management

12 ORNIS FENNICA Vol. 92, 2015



and Nature Reserves, Moscow. (In Russian with Eng-

lish summary)

Borchtchevski, V.G. 2003: Joint habitat use by four grouse

species (Tetrao urogallus, Tetrao tetrix, Bonasa bona-

sia, Lagopus lagopus) in the Vodlozersky National

Park (NW Russia) during early spring. — In Dyna-

mics of game animal populations in Northern Europe:

Proceedings of the 3
rd

International Symposium (ed.

Danilov, P.I. & Zimin, V.B.): 26–31. Petrozavodsk.

Borchtchevski, V.G. 2011: The age composition of caper-

caillie Tetrao urogallus in logged areas of NW Russia.

— Russian Ornithological Journal 20: 2059–2076. (In

Russian)

Borchtchevski, V.G., Hjeljord, O., Wegge, P., Sivkov, A.

2003: Does fragmentation by logging reduce grouse

reproductive success in boreal forest? — Wildlife Bio-

logy 9: 275–282.

Borchtchevski, V.G. & Moss, R. 2008: Factors affecting

the spring distribution of Capercaillie (Tetrao urogal-

lus) and black grouse (T. tetrix) in habitats of largely-

intact taiga in NW Russia. — Bulletin of Game Mana-

gement 5: 138–161. (In Russian with English summa-

ry)

Borchtchevski,V.G. & Moss, R. 2014: Age structure of

Capercaillie males (Tetrao urogallus) in NW Russia

may reflect two-way movements – a hypothesis. —

Ornis Fennica 91: 14–28.

Couturier, M. & Couturier, A. 1980: Les coqs de bruyère.

Vol. 1: Le grand coq de bruyère Tetrao urogallus uro-

gallus L. — F. Dubusc, Boulogne. (In French)

Cramp, S. & Simmons, K.E.L. 1980: Handbook of the

birds of Europe, the Middle East and North Africa:

The birds of the western Palearctic, Vol. 2. — Oxford

University Press, Oxford.

Desbrosses, R., Leclercq, B. & Borchtchevski, V. 1992:

Les tétraonidés de la taïga d’Arkhangelsk (U.R.S.S.).

— Bulletin Mensuel de l’Office National de la Chasse

116: 13–27. (In French)

Gjerde, I. & Wegge, I. 1989: Spacing pattern, habitat use

and survival of Capercaillie in a fragmented winter ha-

bitat. — Ornis Scandinavica 20: 219–225.

Hämäläinen, A., Alatalo, R.V., Lebigre, C., Siitari, H. &

Soulsbury, C.D. 2012: Fighting behaviour as a corre-

late of male mating success in black grouse Tetrao te-

trix. — Behavioral Ecology and Sociobiology 66:

1577–1586.

Hjeljord, O., Wegge, P., Rolstad, J., Ivanova, M. & Be-

shkarev, A.B. 2000: Spring-summer movements of

male capercaillie Tetrao urogallus: A test of the “land-

scape mosaic” hypothesis. — Wildlife Biology 6:

251–256.

Hjeljord, O., Wegge, P. & Sivkov, A.V. 2011: Research on

Russian grouse. — Grouse News 42: 7–13.

Hörnfeldt, B., Hipkiss, T. & Eklund, U. 2001: Juvenile sex

ratio in relation to breeding success in Capercaillie Te-

trao urogallus and Black Grouse T. tetrix. — Ibis 143:

627–631.

Kirikov, S.V. 1952: Birds and mammals in the landscapes

of the southern Urals. — Ed. Nauka, Moscow. (In

Russian)

Kuzmina, M.A. 1968: Distribution and numbers of grouse

in Kazakhstan. — In Resources of grouse in USSR:

45–47. Ed. Nauka, Moscow. (In Russian)

Liukkonen-Anttila, T., Rätti, O., Kvist, L., Helle, P. &

Orell, M. 2004: Lack of genetic structuring and sub-

species differentiation in the capercaillie (Tetrao uro-

gallus) in Finland. — Annales Zoologici Fennici 41:

619–633.

Mil’kov, F.N. & Gvozdetskiy, N.A. 1976: Physical geog-

raphy of USSR. General overview. European part of

USSR and the Caucasus. — Ed. Misl, Moscow. (In

Russian)

Moss, R., Picozzi, N., Summers, R.W. & Baines, D. 2000:

Capercaillie in Scotland – demography of a declining

population. — Ibis 142: 257–67.

Novikov, V.P. 1978: Capercaillie and hazel grouse in forest

areas transformed by logging. — In Ways and means

to improve the rational use and productivity of hunting

areas (ed. Korytin, S.A): 150–152. Moscow. (In Rus-

sian)

Potapov, R.L. 1985: Order Galliformes, Family Tetraoni-

dae. — In Fauna of the USSR: birds, Vol. 3. Ed. Nau-

ka, Leningrad. (In Russian)

Potapov, R. & Sale, R. 2013: The grouse of the world. —

New Holland, London.

Rolstad, J. & Wegge, P. 1989: Capercaillie Tetrao urogal-

lus populations and modern forestry – a case for land-

scape ecological studies. — Finnish Game Research

46: 43–52.

Romanov, A.N. 1979: The common Capercaillie. — Ed.

Nauka, Moscow. (In Russian)

Rykova, S.Yu., Kalyakin, V.N. & Staropopov, G.A. 2012:

Materials on foods of birds of prey in the Pinega Na-

ture Reserve, Arkhangelsk region, European Russia.

— Ornithology, Moscow 37: 49–59. (In Russian with

English summary)

Semenov-Tian-Shansky, O.I. 1960: On ecology of Tetrao-

nids. — Transactions of the Lapland State Reserve

(Moscow) 5: 5–319. (In Russian with English summa-

ry)

Siivonen, L.1952: On the reflection of short-term fluctua-

tions in numbers in the reproduction of tetraonids. —

Papers on Game Research 9: 1–43.

Storch, I. 2001: Capercaillie. — BWP Update 3: 1–24.

Storch, I. (ed.). 2007: Grouse: Status Survey and Conser-

vation Action Plan 2006–2010. — IUCN, Gland,

Switzerland and Cambridge, UK and World Pheasant

Association, Fordingbridge, UK.

Summers, R.W., Green, R.E., Proctor, R., Dugan, D.,

Lambie, D., Moncrieff, R., Moss, R. & Baines D.

2004: An experimental study of the effects of preda-

tion on the breeding productivity of capercaillie and

black grouse. — Journal of Applied Ecology 41: 513–

525.

Wegge, P., Kvålsgard, T., Hjeljord, O. & Sivkov, A.V.

2003: Spring spacing behaviour of Capercaillie Tetrao

Moss & Borchtchevski: Movement of Capercaillie males in NW Russia 13



urogallus males does not limit numbers at leks. —

Wildlife Biology 9: 283–289.

Wegge, P. & Larsen, B.B. 1987: Spacing of adult and sub-

adult male common Capercaillie during the breeding

season. — Auk 104: 481–490.

Wegge, P., Olstad, T., Gregersen, H., Hjeljord, O. & Siv-

kov, A.V. 2005: Capercaillie broods in pristine boreal

forest in northwestern Russia: the importance of in-

sects and cover in habitat selection. — Canadian Jour-

nal of Zoology 83: 1547–1555.

14 ORNIS FENNICA Vol. 92, 2015

Appendix

Details of simulations for Table 7.

Get A
Ni

and A
Li

(proportion in each age class i =1–4, for N and L) and their SEs from GLM (section 2).

Define rs: for example rsA
Ni

is a random sample from the normal distribution reconstituted from the

mean and SE of A
Ni
. For a lower case variable use parentheses e.g. rs(x). Use e.g. A

Ni
to represent the

mean or central value of A
Ni
. By default rs is from a normal distribution. In the case of S

1
use a logit expres-

sion to avoid rsS
1

> 1, such that logit rsS
1
= log

e
(S

1
/ (1 – S

1
) + rs(x)), where x is a number back-transformed

for subsequent calculations. In the case of y, as uncertain about the mean as about the variance, use a

uniform distribution for rs(y). Sometimes rs is the result of an operation and constitutes a random sample

from a newly-formed distribution: for example rsA
N0

= rsA
N1

/ rsS
1
.

Define simulated means and SE: use the SE from 10,000 rs along with the new central value from ei-

ther 1) performing the same operation on the constituent means e.g., A
N0

= A
N1

/ S
1

or 2) once at this stage

in the calculation, the illustrative model. To get 95% CI rank 10,000 simulated rs and take those of rank 250

and 9750 as CI.

Get proportion of birds in each age class i = 0–4 (nb now includes age class 0): define �rsA
Ni

= rsA
N0

+

rsA
N1

+ rsA
N2

+ rsA
N3

+ rsA
N4

and rsC
Ni

= rsA
Ni

/ �rsA
Ni
. From 10,000 rsC

Ni
get seC

Ni
(the SE of the proportion of

age class i) in population N. Along the same lines we get se �C
Ni

where �C
Ni

= 1.The same goes for seC
Li

and se �C
Li
.

Estimate CI for population and stream sizes in P
N1

units using central values from the illustrative model

with SE estimated as above. P
N0�4

is fixed. The P
N1

unit is set at mean 1 such that P
N0�4

= 9.057 (from illus-

trative model), but the proportion of age class 1 in N is somewhat uncertain such that rs(P
N1

unit) = P
N0�4

×

rsA
N1

. P
L0�4

is also expressed in P
N1

units (mean 23.34 from illustrative model) and has the additional uncer-

tainty that it is computed by adding up age classes so rsP
L0�4

= P
L0�4

× rs(P
N1

unit) × �rsA
Ni
. Also rsP

L1
=

rsP
L0�4

× rsA
L1

; rsG
L1

= rsA
L2

/ rsA
L1

; rsG
L2

= rsA
L3

/ rsA
L2

; rsG
N1

= rsA
N2

/ rsA
N1

. This provides SE for the calcula-

tions of the CI for stream sizes from the illustrative model:

rs(e) = (rsP
L1

× ((P
N0�4

/ (P
N0�4

+ rsP
L0�4

)) × (P
N0�4

+ rsP
L0�4

)) – ((rsP
L0�4

/ (P
N0�4

+ rsP
L0�4

)) × (P
N0�4

+ rsP
L0�4

))

× (1 + rsP
L1

)),

rsM
1em

= rs(e) × P
N0�4

× rs(y),

rsM
2em

= (rsG
N1

– rsS
1
) + (rsP

L1
× rsG

L1
× (rsS

2
– rsG

L2
) / rsS

2
).

Repeat simulations 10,000 times and take CI. Convert all results to P
N0�4

= 100,000 by × 100,000 / 9.057.


