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The wind energy sector is steadily growing, and the number of wind turbines is expected

to expand across large areas of the globe in the near future. While the development of

wind energy can contribute to mitigating climate change, it also poses challenges to wild-

life, particularly birds, due to increased collision risk with wind turbines. Here we quan-

tify and map potential conflicts between the potential for wind energy development and

the distribution of terrestrial soaring birds. We explore the relationship between species

traits (including body mass, migration ecology and extinction risk) and exposure to po-

tential wind energy development, and identified areas of potential conflict between wind

power production and soaring bird conservation. We considered the full range of each

species, as well as separately analyzing the breeding, non-breeding and passage ranges

for migratory species. We show that exposure to potential wind energy development is

similar for soaring and non-soaring bird species. Within different parts of the range of

soaring bird species, passage distributions have significantly higher potential for wind en-

ergy development than the full, breeding or non-breeding ranges. Moreover, exposure to

potential wind energy development was higher within the ranges of heavier soaring bird

species and those that are migratory. We show that areas of conflict between soaring bird

conservation and potential wind energy development could be very large, particularly
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when the passage ranges of soaring bird species are considered. Such areas of potential

conflict are largely unprotected. This highlights a risk for soaring birds from potential

wind energy development wherever it is not carefully sited in order to minimise environ-

mental impacts.

1. Introduction

Mitigating climate change and averting global bio-

diversity loss are the two main environmental

challenges the modern world is facing (IPCC

2014, Secretariat of the Convention on Biological

Diversity 2014). In the attempt to mitigate climate

change, the global energy sector is undergoing a

slow but progressive transition, shifting from fos-

sil fuels to renewable energy sources (REN21

2014). Among these, wind energy generation is

one of the fastest growing sources of renewable

energy globally (AWEA 2014, REN21 2014,

EWEA 2015). This trend is projected to continue

in the coming decades because wind, as well as

other renewable energy sources, can contribute to

mitigating global climate change and help coun-

tries to achieve targets on greenhouse gas emis-

sions (IPCC 2014).

Like most energy sources, wind energy expan-

sion can result in some associated negative envi-

ronmental impacts (Wang & Wang 2015), includ-

ing negative impacts on wildlife (Northrup &

Wittemyer 2013, Pearce-Higgins & Green 2014).

Wind energy development can cause direct mor-

tality of volant wildlife through collision with

wind turbines, which may impact the persistence

of populations (Northrup & Wittemyer 2013). It

can also impact species by altering their behavior,

displacing populations from an area and/or reduc-

ing fecundity and breeding success (Northrup &

Wittemyer 2013, Sansom et al. 2016). Further-

more, in remote and less accessible areas, wind en-

ergy development may hasten the loss and frag-

mentation of previously continuous habitats

through road network and electric grid develop-

ment (Northrup & Wittemyer 2013). Although the

extent of the impacts of wind energy development

on wildlife varies between taxa and location, soar-

ing birds (mostly raptors) are generally reported to

be most affected (de Lucas et al. 2008, Korner-

Nievergelt et al. 2013, Thaxter et al. 2017).

Large-bodied soaring birds typically have low

flight maneuverability, which increases their risk

of colliding with wind turbines (Noguera et al.

2010, Pearce-Higgins & Green 2014). Moreover,

large raptors, such as vultures of the genus Gyps,

typically fly with their head pointing downwards

in order to scan the ground. This posture creates a

blind field in the direction of travel that can further

increase the risk of collision with wind turbines

(Martin et al. 2012). The added mortality from col-

lision with wind turbines may be particularly detri-

mental for species whose life history makes their

populations highly sensitive to such losses. This is

the case for most large birds of prey, such as eagles

and vultures, which take several years to reach

sexual maturity and have low reproductive rates,

making them least able to compensate for the addi-

tional losses (Carrete et al. 2012, Dahl et al. 2012,

Martinez-Abrain et al. 2012, Pearce-Higgins &

Green 2014).

Many studies have been conducted on the im-

pacts of wind energy development on wildlife, but

most have been restricted to specific taxonomic

groups or geographic areas (see some examples in

Northrup & Wittemyer 2013). However, the immi-

nent and growing conflict between potential wind

energy development (hereafter, we use the term

“potential wind energy development” to indicate

current or future potential development of wind

farms) and wildlife protection may require imple-

mentation of best management practices that cover

large spatial scales and a wide range of species. For

this to take place, there is a need to improve our un-

derstanding of how potential wind energy devel-

opment may affect particular groups of species

with specific life history traits and conservation

status (González-Suárez et al. 2013). There is also

a need to characterize and locate areas of conflict

between potential wind energy development and

bird populations across the entire distributions of

migratory species, including their passage and

non-breeding ranges. Such basic understanding is

largely lacking, thereby hindering the develop-

ment of broad management practices to minimize

2 ORNIS FENNICA Vol. 95, 2018



the rise of potential conflicts between potential

wind energy development and birds.

Here we aim to quantify and map conflicts be-

tween potential wind energy development and ter-

restrial soaring birds. Specifically, we first com-

pare the potential for wind power development

within the distributions of all non-soaring bird spe-

cies (excluding seabirds) with that within the

ranges of soaring bird species. We then model the

potential for wind power development within the

ranges of soaring bird species in relation to a suite

of species’life history traits (such as foraging strat-

egy, body mass and migration ecology) and spe-

cies extinction risk (using IUCN Red List catego-

ries, BirdLife International 2015).

This analysis aims at understanding the traits

that best correlate with the exposure a species may

face from potential wind energy development. For

migratory bird species, we also assess in which

parts of their ranges (breeding, non-breeding, or

passage distributions) exposure is greatest. Fi-

nally, we identify areas across the globe where

conflicts between potential wind energy develop-

ment and soaring bird conservation are most likely

to arise. The overall aim of this work is to provide

information that would help targeting further in-

depth studies and conservation efforts towards the

regions of high conflict and the soaring bird spe-

cies at highest exposure from potential wind en-

ergy development.

2. Material and methods

2.1. Study environment and study species

This study focuses on the terrestrial areas of the

world, where data on potential for wind energy de-

velopment are available (see below) and where the

potential impacts of wind energy on birds are best

known. Most of the evidence gathered so far sug-

gests that some of the major impacts of wind farms

on wildlife are through collision of, mainly, soar-

ing birds with wind power turbines (Northrup &

Wittemyer 2013, Thaxter et al. 2017). However,

disturbance effects of wind farms on birds have

also been reported (Drewitt & Langston 2006). We

therefore analyze distributions of soaring bird spe-

cies in relation to distribution of potential wind en-

ergy development across terrestrial areas. Here we

considered all raptors (all species in the orders:

Accipitriformes, Cathartiformes and Falconi-

formes), and also other taxa that regularly soar and

have been recorded to collide with wind turbines

as soaring bird species. These taxa are represented

by selected species within the orders Ciconii-

formes and Pelecaniformes, all species within the

families Aramidae and Gruidae (order Grui-

formes) and Corvus spp. and Pyrrhocorax spp.

(family Corvidae). Overall, soaring birds as de-

fined here amounted to 520 species. From these,

we excluded from the analyses 15 soaring bird

species because their distribution is restricted to

small oceanic islands where no wind data were

available or because their range is too small (i.e., <

150km
2
) compared with the resolution of the wind

data. The list of the 505 species used for analyses is

provided in Supplementary Table S1.

We also analyzed the distributions of 9069

other bird species of the world (excluding sea-

birds) for comparison of the exposure from poten-

tial wind energy development between soaring

and non-soaring bird species.

2.2. Species data

We used range maps of bird species (BirdLife In-

ternational and NatureServe 2014), taking only the

range polygons where the presence of the species

was classified as extant or probably extant, and the

origin was classified as native or reintroduced. For

soaring birds only, in addition to the full range of

each species, we also considered three different

subdivisions of the range (see e.g., Somveille et al.

2013): the breeding range (i.e., the part of the over-

all range where the species is classified as being

resident all year round or present during the bree-

ding season only); the non-breeding range (i.e.,

where the species is resident or known to occur in

the non-breeding season); and the passage range

(i.e., the areas the species regularly passes through

during migration, hence limited to migratory spe-

cies only). The latter ranges were only available

for a subset of migratory species (68 species out of

194 soaring bird species considered here). We

hereafter refer to these four different range classes

for soaring birds as: full range, breeding range,

non-breeding range, and passage range. The ratio-

nale for using the three additional and more spe-
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cific range class combinations is to gain better in-

sight into parts of the species’ ranges that are im-

portant for critical life stages (see e.g., Runge et

al., 2015).

We then compiled available information about

the status and traits of all soaring bird species.

IUCN Red List category of extinction risk was

taken from BirdLife International 2015), and com-

prised Critically Endangered, Endangered, Vul-

nerable, Near Threatened, Least Concern, or Data

Deficient. We extracted information about body

mass and foraging strategy from a large, recently

published and freely available database on Elton

traits of the birds of the world (Wilman et al.

2014). The main rationale for considering body

mass is because larger-bodied animals are more

likely to collide with wind turbines than smaller

ones (Pearce-Higgins & Green 2014) for pure

probabilistic reasons and also because maneuver-

ability of large birds is reduced, which may influ-

ence their ability to avoid wind turbines (Drewitt

& Langston 2006). Moreover, larger-bodied spe-

cies are typically K-selected, long-lived species,

for which additional mortality from collision with

wind turbines may have a much higher impacts on

population persistence compared with small-bod-

ied species (Katzner et al. 2016).

Foraging strategy represents the percentage of

time the species is estimated to forage well above

vegetation or human-made structures (Wilman et

al. 2014). That is, if the species forages exclu-

sively in the air above e.g., forest canopy it will

have a foraging strategy value of 100, but if it ex-

clusively forages close to the ground or e.g., below

or just above the canopy then it will have a value of

zero or close to zero. Considering the foraging

strategy of species in relation to potential wind en-

ergy development is relevant because species that

forage in the air, such as many large raptors, may

be more exposed to wind energy infrastructures

than species foraging in the lower canopy or close

to the ground. We acknowledge that some behav-

iours, such as display, prey delivery and territorial

defence, may take place at different flight heights

than the preferred foraging height. However, as

these behaviours are less frequent than foraging,

we opted for foraging flight height as our explana-

tory variable. Finally, we calculated the centroid of

the distribution range of each species of soaring

birds using ArcGIS 10.1 (ESRI 2011).

2.3. Calculation of potential wind energy

development within species’ distributions

We used a global map of terrestrial unrestricted po-

tential for wind energy production, in which

power potential was calculated based on incident

wind harnessed by a horizontal axis wind rotor,

unrestricted by factors such as available land, cost

and power distribution (see Pogson et al. 2013 for

further details). At the country level, unrestricted

potential for wind energy production significantly

and positively correlates with the country’s in-

stalled wind energy capacity (see Supplementary

Fig. S1). This correlation, although weak, indi-

cates that potential wind energy development, as

used in this study, may represent a valid proxy for

future wind energy infrastructure development at a

broad spatial scale (i.e., more wind farms are pre-

dicted to be installed in areas of high wind energy

potential).

We used the zonal statistics function in ArcGIS

10.1 to calculate the sum of wind energy potential

within each bird species’range, the area of the spe-

cies’ full range (in km
2
), and the area and fraction

of the range with at least some wind energy poten-

tial (i.e., > 0). We then derived, for each species, a

potential wind energy development measure (re-

ferred to in the text as “potential wind energy de-

velopment” for clarity) calibrated according to the

fraction of the species’ range with wind potential.

Firstly, potential wind energy development was

calculated by dividing the summed wind energy

potential from across the cells (10km × 10km in

size) within the species range by the summed area

of the cells within the range with some wind poten-

tial. We then multiplied this value by the fraction

of the overall range with at least some wind poten-

tial.

The latter component of the multiplication was

used in order to account for the extent of a species’

range potentially affected by exposure to wind en-

ergy development. For example, a species may be

exposed to a very high level of potential wind en-

ergy development but only in a small fraction of its

range, which renders the overall exposure to po-

tential wind energy development rather low for

that species. Conversely, a species may be exposed

to a very high level of potential wind energy devel-

opment across most of its range, making that spe-

cies at high overall exposure. For migratory soar-
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ing bird species, we also calculated potential wind

energy development for each of the three addi-

tional range classes (i.e., breeding, non-breeding

and passage ranges). The derived measure of po-

tential wind energy development calibrated ac-

cording to the fraction of a species’ range with

wind energy potential >0 was used as a response

variable in the following analyses.

2.4. Statistical analyses

We used univariate analysis of variance to com-

pare the mean values for potential wind energy de-

velopment between the two main groups consid-

ered: non-soaring birds (excluding seabirds) and

soaring birds. We then used the same approach to

compare mean values for potential wind energy

development within the four different ranges (i.e.,

full range, breeding, non-breeding and passage

range) of soaring birds. We ran pair-wise group

comparisons using post-hoc tests corrected with

the Tukey method to adjust for multiple testing.

Next we built four separate general linear

mixed models (GLMM) in which the response

variable was in turn the potential wind energy de-

velopment relative to the full range, and relative to

the breeding, non-breeding and passage range of

soaring bird species. The model assumed a normal

distribution and identity link function.

The structure of each of the four GLMMs was

the same, and included as predictors the IUCN Red

List category of extinction risk for the species (as a

categorical variable), body mass (log-trans-

formed), foraging strategy (as continuous vari-

able; see above). In addition, for three out of the

four models for soaring bird species (i.e., the ones

for full range, breeding range, and non-breeding

range), an extra categorical variable denoting

whether the species is migratory or not was also in-

cluded.

Across all models, the response variable was

log-transformed to fit a normal distribution, and

the taxonomic order was included as a random fac-

tor to account for the phylogenetic relatedness of

the species (see e.g., Sanderson et al. 2015).

Where spatial autocorrelation was detected in the

residuals of the final models, this was treated by

creating and including spatial eigenvectors (using

the “spdep” package in R; Bivand & Piras 2015,

Bivand et al. 2013) in the models with the purpose

of accounting for residual spatial autocorrelation

(Dormann et al. 2007). One soaring bird species

(Erythrotriorchis buergersi) had an IUCN Red

List category of Data Deficient. We treated this

species as Vulnerable (following Butchart & Bird

2010). For the model of potential wind energy de-

velopment within the passage range of bird spe-

cies, only one species (Geronticus eremita) was

listed as Critically Endangered. We thus excluded

this species from that model as we had a categori-

cal variable depicting the IUCN Red List status of

each species, and having only one observation in

the category level of Critically Endangered would

lead to problems in model convergence. The effec-

tive sample size thus consisted of 505 species for

the full range, breeding range, and non-breeding

range models, and 68 for the passage range model.

We applied model selection based on the

Akaike’s information criterion (AIC), followed,

when necessary (e.g., if there was high model un-

certainty), by multi-model inference and averag-

ing (Burnham & Anderson 2002) using the

MuMin package in R (Barto� 2014). We first run

all model combinations, starting from the full

model and based on the predictors available in

each set of models. We then compared all nested

models in a set based on AIC. When performed,

model averaging was based on the best ranked

(i.e., with �AIC < 4) models. For the significant

categorical predictors (e.g., Red List category) we

also ran post-hoc comparisons (with p-values ad-

justed according to the Tukey method) in order to

identify which pair-wise comparison was signifi-

cant.

2.5. Priority areas for soaring bird

conservation in relation to potential wind

energy development

We used the distributional data from 505 soaring

bird species (see above and Supplementary Table

S1) to rank the terrestrial areas of the world ac-

cording to their priority for conservation in rela-

tion to addressing the risk of wind energy develop-

ment to soaring birds, taking into account

complementarity of species’ occurrence between

different areas. In doing so we used the spatial con-

servation prioritization tool Zonation v.4 (Moila-

nen et al. 2005, Moilanen et al. 2014). The tool

Santangeli et al.: Wind energy development and soaring birds 5



iteratively ranks all areas from lowest to highest

priority for conservation, guided by principles

such as balance between representation of all input

features, minimization of aggregate extinction

rates, and preference for spatial aggregation

(Montesino Pouzols et al. 2014). The Zonation al-

gorithm operates by successively removing those

cells whose loss results in the smallest reduction in

the value of a species in the landscape. The re-

moval order of the cells depends on the cell re-

moval rule (Moilanen et al. 2005). We used the ad-

ditive benefit function removal rule, which fa-

vours the selection of areas with high species rich-

ness. Because our primary focus is in the identifi-

cation of priority areas to aid conservation of soar-

ing birds, we assigned a weight to each species ac-
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Fig. 1. Number of species in relation to potential wind energy development across the full range of non-
soaring bird species (excluding seabirds) and soaring bird species (left panels), and across the breeding,
non-breeding and passage ranges of soaring bird species (right panels). Vertical dashed lines indicate me-
dian values in each case. Note the different Y axis scales.



cording to its IUCN Red List category (following

Montesino Pouzols et al. 2014). That is, higher

weights were assigned to the more threatened spe-

cies (weight of 1 for Least Concern, 2 for Near

Threatened, 4 for Vulnerable, 6 for Endangered, 8

for Critically Endangered). We ran four separate

sets of analyses, using the full range of the species,

the non-breeding, breeding (all based on 505 spe-

cies’ distributions), and the passage ranges (based

on 68 species’ distributions).

Next we extracted the top 30% ranked priority

areas for soaring bird conservation (hereafter: top-

ranking soaring bird areas) from the outputs based

on the four types of distributions. The choice of us-

ing the 30% top priority areas for soaring bird spe-

cies was made following Santangeli et al. (2016b).

This choice is somewhat arbitrary, but neverthe-

less may represent a precautionary scenario for en-

suring soaring bird conservation through sparing a

large enough land for wide-ranging soaring bird

species. This was a conservative threshold as com-

pared with, e.g., Aichi Target 11 of the Strategic

Plan on Biodiversity adopted through the Conven-

tion on Biological Diversity (CBD 2010, Monte-

sino Pouzols et al. 2014).

We then also extracted the top 50% of areas of

highest potential wind energy development (here-

after: top-ranked wind areas). Although arbitrary,

the choice of using the top 50% areas for potential

wind energy development was driven by a precau-

tionary and conservative approach whereby large

areas of relatively high potential for wind energy

development are considered (we also present maps

where a threshold of 30% is considered; see Sup-

plementary Fig. S2). Finally, we calculated the

proportion of top-ranking soaring bird areas over-

lapping the top-ranking wind areas, and how much

of these areas falls within and outside of protected

areas (using the protected area categories I to VI of

IUCN, IUCN and UNEP-WCMC 2017, Monte-

sino Pouzols et al. 2014) and Important Bird and

Biodiversity Areas (IBAs, BirdLife International

2014).

3. Results

3.1. Potential wind energy development

within bird species’ ranges

Potential wind energy development within the full

distributions of soaring bird species was similar to

that within the full distributions of non-soaring

species (mean = 8.95 ± 0.02 SE and 8.95 ± 0.06, re-

spectively, F = 0.00, p = 0.97, DF = 1; see Fig. 1

left panels for the frequency distribution and me-

Santangeli et al.: Wind energy development and soaring birds 7

Fig. 2. Potential wind energy development (on log scale) within the full range of soaring bird species with
different IUCN Red List categories (left panel; CR Critically Endangered, EN Endangered, VU Vulnerable,
NT Near Threatened, LC Least Concern); potential wind energy development for migrant versus non mi-
grant species (central panel), and in relation to body mass (right panel). In the left and central panels, val-
ues are least square means (±SE) derived from the best-ranked general linear mixed model (see text for
further details on model structure and model selection). Horizontal lines above the bars indicate signifi-
cantly different pairs of categories resulting from post-hoc testing adjusted with the Tukey correction me-
thod. The potential wind energy development and body mass values in the right panel are shown on a log
scale.



dian values of each of the two groups). However,

the potential wind energy development within the

different parts of the range of soaring bird species

was significantly different (Anova test: F = 11.41,

p <0.001, DF = 3; Fig. 1 right-hand panels). Spe-

cifically, potential wind energy development was

higher (p <0.001 after post-hoc comparison) with-

in the passage distributions of soaring bird species

(mean ± SE = 9.66 ± 0.13) compared with poten-

tial wind energy development within the full

range, breeding and non-breeding range (mean ±

SE: 8.95 ± 0.05; 9.00 ± 0.05; 8.85 ± 0.05; respec-

tively).

3.2. Correlates of potential wind energy

development within the range

of soaring bird species

3.2.1. Full range

Among alternative models (based on Red List cat-

egory, body mass, foraging strategy and migration

ecology) compared using AIC, two models ap-

peared to be similarly supported (i.e., �AIC < 2;

see Supplementary Table S2). We thus proceeded

with multi-model averaging, which revealed that

three of the four variables had significant effects.

Specifically, potential wind energy development

differed within the ranges of species under differ-

ent IUCN Red List categories (F = 3.0; p = 0.019;

statistics derived from the best ranked model; Fig.

2 left panel). Critically Endangered species had

significantly lower potential wind energy develop-

ment within their ranges compared with Near

Threatened and Least Concern species. Moreover,

potential wind energy development was signifi-

cantly higher within the range of migratory com-

pared with resident species (F = 65.8; p < 0.001;

Fig. 2 central panel), and was higher within the

range of heavier soaring bird species (F = 9.6; p =

0.002; Fig. 2 right panel).

3.2.2. Breeding range

Analyses based on potential wind energy develop-

ment within the breeding ranges of soaring bird

species suggest some model uncertainty, with two

models having similar support (i.e., �AIC < 2; see

Supplementary Table S3). Multi-model averaging

performed on the best-supported models indicates

that migration ecology was significant (F = 74.1; p

< 0.001), with migrant species having higher po-

tential wind energy development within their bree-

ding ranges compared with resident species (least

square means ± SE: 9.09 ± 0.16 and 8.49 ± 0.15,

respectively). Potential wind energy development

also increased with body mass (F = 19.7; p <

0.001), while foraging strategy remained non-sig-

nificant (p = 0.318). Moreover, potential wind en-

ergy development again varied, albeit only mar-

ginally, according to the Red List category of the

species (F = 2.8; p = 0.024), being marginally

higher for Least Concern than for Vulnerable spe-

cies (least square means ± SE: 9.06 ± 0.14 and 8.64

± 0.19, respectively).

3.2.3. Non-breeding range

Again model uncertainty was apparent (see Sup-

plementary Table S4) and we therefore proceeded

with multi-model averaging. The results were con-

sistent with those for the previous two models,

with potential wind energy development within

the non-breeding range being higher for migratory

species and large-bodied species, and also in rela-

tion to species Red List category (migration eco-

logy: F = 16,5; p < 0,001; body mass: F = 21.6; p <

0.001; Red List category: F = 3.3; p = 0.010). For

Red List categories, the only significant result was

the finding that Least Concern species had higher

potential wind energy development within their

non-breeding range compared with Critically En-

dangered species (least square means ± SE: 8.86 ±

0.14 and 8.15 ± 0.27, respectively).

3.2.4. Passage range

The models based on potential wind energy devel-

opment for the passage ranges of soaring bird spe-

cies indicated high model uncertainty (see Supple-

mentary Table S5), thus multi-model averaging

was applied. Averaging across the best-supported

models suggested that potential wind energy de-

velopment was similar across species irrespective

of their Red List category, foraging strategy or

body mass; p = 0.12, 0.98, and 0.12, respectively).

8 ORNIS FENNICA Vol. 95, 2018



3.3. Potential areas of conflict

between potential wind energy development

and soaring bird species

There were large areas of overlap between areas of

high potential wind energy development and areas

of importance for soaring bird conservation, span-

ning a wide range of latitudes and regions (Fig. 3).

Areas of Central and Southern Eurasia and South-

ern North America, and large parts of Central and

South America, Africa and Oceania appear to have

high potential for conflict between potential wind

energy development and soaring bird conserva-

tion.

This spatial pattern is broadly similar when

considering the full range or the breeding range of

soaring bird species (Fig. 3), largely because prior-

ity areas for these two are very similar (see also

Supplementary Fig. S2 and S3). When conflict

areas are identified using the non-breeding ranges

of soaring bird species, potential conflict areas

shift within Eurasia and redistribute towards lower

latitudes (Fig. 3). Conversely, when the passage

ranges of migratory species (N = 68) are consid-

ered, potential conflict areas occur across large

parts of central Eurasia and North America, the

Arabian peninsula and north and east Africa, in-

cluding along flyways for soaring birds that mi-

grate from Eurasia to Africa (Fig. 3).

The potential conflict areas identified (i.e.,

overlapping regions of top-ranked areas for soar-

ing bird conservation and potential wind energy

development; Fig. 3) are less likely to be protected

and also more likely to contain independently

identified important sites for bird conservation

than the wider landscape. Only 8–10% of their

area is covered by protected areas (compared with

14% of the global terrestrial area covered by pro-

tected areas, Fig. 4), while 12–14% of potential

conflict areas fall within IBAs (compared with 7%

of the global terrestrial area covered by IBAs,

Fig. 4).
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Fig. 3. The distribution of the top-ranked areas for potential wind energy development (top-ranked 50%; in
blue), the top-ranked areas for soaring bird species conservation (top-ranked 30%; in green), and the areas
where these above two overlap (in red) when the full, breeding, non-breeding and passage ranges of spe-
cies are considered for deriving priorities for soaring bird conservation. Areas of overlap based on thresh-
olds of 30% top-ranked areas for soaring bird species conservation and for potential wind energy develop-
ment are highlighted in dark red. See also Supplementary Fig. S2 for the distribution of these latter areas
using the 30% threshold separately for soaring birds, wind energy and their overlap.



4. Discussion

We quantified the relationship between species

traits and exposure from potential wind energy de-

velopment, and identified potential areas for con-

flict between potential wind energy development

and soaring bird conservation globally. To our

knowledge, no previous study on this topic has had

such a wide scope. We show that exposure to po-

tential wind energy development is similar for

soaring and non-soaring bird species, but exposure

is highest across the passage ranges of soaring bird

species, and for heavier and migratory species. In

addition, we identified areas where conflicts be-

tween soaring bird conservation and potential

wind energy development are most likely to occur.

The vast majority of these areas are currently un-

protected, and have thus greater potential for wind

power plant development.

Overall, the results of this study provide evi-

dence across a broad taxonomic and spatial cover-

age that soaring birds may be at highest exposure

to potential wind energy development within their

passage ranges. This is of particular concern given

that soaring birds often concentrate in large num-

bers along narrow flyways and at bottleneck sites

on migration (Newton 2007). Developing wind

farms within such sensitive areas may thus have

severe impacts on the populations, with demo-

graphic consequences across the entire range of

the species (Katzner et al. 2016).

Furthermore, across their full distribution

range, including the breeding, non-breeding and

passage ranges, migratory soaring bird species and

heavier species may be highly exposed to potential

wind energy development. Migratory soaring

birds are already well known to be strongly im-

pacted by potential wind energy development

along their migration flyways (Drewitt & Lang-

ston 2006, Pearce-Higgins & Green 2014). The

high potential wind energy development within

their passage range underscores a potentially high

exposure of migratory soaring birds to potential

wind energy development. Our findings also sug-

gest that exposure of soaring birds to potential

wind energy development may be further exacer-

bated by the fact that larger-bodied species, which

are typically (although not exclusively) more vul-

nerable to collision with wind turbines (Drewitt &

Langston 2006), appear to have higher potential

wind energy development on average within their

ranges. The lack of a correlation between the for-

aging strategy of soaring birds and potential wind

energy development within their range may be due

to the coarse nature of the foraging strategy dataset

relative to the diversity of flight styles and forag-

ing behaviors.

The regions of overlap between the top-ranked

areas for potential wind energy development and

those for soaring bird conservation further under-

score the importance of addressing potential im-

pacts of potential wind energy development on

soaring birds across their entire distribution. We

show that conflicts between potential wind energy

development and soaring bird conservation appear

to be evenly distributed across latitudes when con-

sidering the full ranges of soaring bird species.

However, when only the passage range is consid-

ered, conflict areas appear to be largely concen-

trated in low and mid-latitudes in the Northern

hemisphere. These regions are predominantly rep-

resented by relatively wealthy countries, such as

those of Europe, the Arabian Peninsula, and the

US, with high technical and financial capacity to
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Fig. 4. The percentage coverage of high potential
conflict areas (i.e., areas with high potential wind
energy development and of high priority for soaring
bird conservation; shown in Fig. 3) by terrestrial
protected areas (black bars) and by Important Bird
and Biodiversity Areas (IBAs; grey bars) separately
for the full, breeding, non-breeding and passage
ranges of soaring bird species. As a reference, the
approximate coverage of terrestrial areas by pro-
tected areas (14%) and IBAs (7%) are also shown
with horizontal dashed lines (black and grey for pro-
tected areas and IBAs, respectively).



expand their national wind energy production

(Santangeli et al. 2016a). Therefore, in these areas,

potential wind energy development may have high

negative impacts on soaring bird populations mi-

grating between their breeding and non-breeding

ranges if it is not sited and operated carefully at the

local scale. This risk is further exacerbated by the

finding that most (92%) of the highlighted conflict

areas between potential wind energy development

and soaring bird conservation across their passage

range are currently unprotected. Worse, an above-

average proportion of these potential conflict areas

(14%) have already been identified as internation-

ally significant for the bird populations they sup-

port, and qualify as Important Bird and Biodiversi-

ty Areas (BirdLife International 2014). Our results

expand current knowledge on the exposure of

soaring bird species to potential wind energy de-

velopment, which has so far been largely studied at

specific sensitive areas, such as migration bottle-

necks, and for a restricted number of species (see

e.g., Carrete et al. 2009, Smallwood et al. 2009, de

Lucas et al. 2012, Martínez-Abraín et al. 2012).

Potential wind energy development is not yet

considered a major threat to many bird species: of

10,060 bird species worldwide (excluding sea-

birds), only 35 species (of which 29 are raptors or

owls) have wind energy development listed as a

current or future threat by BirdLife International

(2015). BirdLife documents threats based on pub-

lished and unpublished information and expert

opinion. In many parts of the world, such informa-

tion is sparse for wind energy development, so it is

entirely plausible that the number of species cur-

rently or potentially threatened by wind energy de-

velopment is underestimated. Hence, it is impor-

tant to identify emerging threats and to address

them before is too late (Sutherland & Woodroof

2009). To this end, our finding that species in

lower categories of extinction risk are associated

with higher potential wind energy development

suggests that there are opportunities for producing

timely science and making evidence-based deci-

sions about wind energy development before im-

pacted species become highly threatened. Ulti-

mately, development informed by robust scientific

evidence would facilitate sustainable extraction of

wind energy with limited impacts on wildlife. At

the international scale, allocation of financial in-

vestments could be targeted towards regions

where impacts on wildlife are predicted to be mini-

mal, such as the areas highlighted (Fig. 3). At the

national level, best management practices, in addi-

tion to careful siting of wind energy development,

are essential (Northrup & Wittemyer 2013, Alli-

son 2017).

Our study has some limitations that should be

born in mind when interpreting the results. Both

the potential wind energy development and spe-

cies distribution maps are rather coarse, as is the

scale of the analyses of this study. In addition we

do not consider the temporal variation in potential

wind energy development, so that correlation with

migration times is not considered. Moreover, the

species traits used here are limited in fully explain-

ing species’ vulnerability to potential wind energy

development. For example, the foraging strategy

used here may be more relevant in consideration to

the breeding and wintering range than the passage

range where the collision vulnerability of soaring

birds may be better explained by e.g., local

weather conditions (Vansteelant et al. 2016).

Moreover, some other species-specific behav-

ioral traits not considered here, such as aerial

courtship displays that some large raptors perform,

e.g., Golden eagle Aquila chrysaetos, may also in-

fluence bird collision vulnerability on their bree-

ding grounds (Pearce-Higgins & Green 2014).

Thus, a wide range of other behavioral and mor-

phological factors, for which no systematic data

were available across most taxa, may also affect

species’ exposure to potential wind energy devel-

opment. It is also important to note that the poten-

tial wind energy development used here is only a

proxy for risk of current or future potential devel-

opment of wind farms (but see Supplementary Fig.

S1), a rapidly expanding industry worldwide

(REN21 2014). Similarly, it should also be noted

that it is the density of wind turbines, rather than

the density of wind power, which increases colli-

sion risk. In this study we have only considered the

impact of land based wind turbines and as migra-

tory paths cross seas this study should be extended

in future to potential offshore wind farm develop-

ments and also include seabirds.

Wind, as well as other renewable energy

sources such as solar, will play a crucial role in

contributing energy with low associated green-

house gas emissions (IPCC 2011). It is, however,

important that the development of these renewable

Santangeli et al.: Wind energy development and soaring birds 11



energies does not come at the expense of wildlife

such as soaring birds. To this end, our findings

raise concerns, particularly for the fate of migra-

tory soaring bird species which appear highly ex-

posed to potential wind energy development and

are inadequately covered by protected areas

(Runge et al. 2015). Nevertheless, there is consid-

erable scope for conserving biodiversity while ex-

panding renewable energy development, includ-

ing wind (Santangeli et al. 2016b). Ultimately, a

cross-national and interdisciplinary collaboration

between academics, conservationists, engineers,

governments, corporates and civil society is

needed in order to find joint solutions that allow ef-

ficient and sustainable energy production from

wind while minimizing its associated impacts on

wildlife (Kareiva & Marvier 2012, Santangeli &

Katzner 2015).
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Tuulivoiman laajentamisen vaikutusten

globaali riskikartoitus liiteleville linnuille

Tuulivoiman käyttö ympäri maailman on kasvussa

ja tuuliturbiineja asennetaan lisää laajoille alueille.

Tuulivoima on eduksi ilmastonmuutoksen torjun-

nassa, mutta siitä voi olla haittaa erityisesti linnuil-

le, johtuen törmäysriskistä turbiinin roottoriin.

Tässä työssä kartoitamme globaalisti alueita, jois-

sa konfliktit tuulivoiman ja terrestristen liitelevien

lintujen välillä ovat todennäköisiä. Tutkimme, on-

ko lintulajin ominaisuuksien (ml. ruumiinpaino,

migraatioekologia ja punaisen listan hävintäriski)

ja sen esiintymisalueella olevan tuulivoiman kehi-

tyspotentiaalin välillä yhteyttä.

Tutkimme erikseen tuulivoimapotentiaalin

päällekkäisyyttä lajien koko esiintymisalueiden,

lisääntymisalueiden, muuttoreittien, ja levähdys-

alueiden kanssa. Analyysimme mukaan tuulivoi-

ma-altistus on keskimäärin samaa luokkaa liitele-

ville ja ei-liiteleville linnuille. Liitelevien lintujen

muuttoreiteillä on kuitenkin merkittävästi kor-

keampi tuulivoimapotentiaali kuin niiden lisään-

tymisalueilla tai ei-liitelevillä linnuilla yleensä.

Lisäksi, tuulivoiman kehityspotentiaali on

korkea erityisesti suurikokoisille ja muuttaville,

liiteleville linnuille. Kun muuttoreitit huomioi-

daan, saattaa konflikteja tuulivoiman kehittämisen

ja liitelevien lintujen välillä esiintyä hyvin laajoilla

alueilla. Nämä alueet ovat valtaosin suojelematto-

mia, mistä seuraa riskejä liiteleville linnuille. Tuu-

livoiman lintujen kannalta kestävään rakentami-

seen tulee siis kiinnittää huomiota.
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