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The need to obtain information on population size to inform management actions for con-

servation is imperative. Despite this, reliable data on Caucasian grouse abundance is

scarce in Iran. The goal of this study was to explore the potential distribution of Caucasian

grouse using an ensemble of small models with outstanding performance for modelling

rare species’distributions to estimate the potential population size in Iran. We fitted an en-

semble of small models with generalized boosted model (GBM) and maximum entropy

(MaxEnt), and then built a final ensemble prediction by averaging across these two en-

sembles of small models. We considered ten environmental descriptors (land-cover, an-

thropogenic and topographic features) which were extracted over a 70 hectare spatial ex-

tent surrounding 22 Caucasian grouse lek occurrences. The best model’s prediction map

was used to estimate the potential population size of Caucasian grouse in Iran. The ensem-

ble of small models with generalized boosted model showed higher transferability perfor-

mances than the two other models on both 10-fold cross-validation and a geographically

independent dataset. Based on the published species’ densities and our prediction map,

the potential population size of Caucasian grouse for Iran was estimated to be 98–196 in-

dividuals, which is considerably less than 350 reported by previous assessments. The pre-

dicted distribution map can be used to select priority areas for conservation, and to iden-

tify survey locations for the species in areas which so far have been poorly sampled.

1. Introduction

One of the pivotal criteria used by biodiversity

conservation institutions for providing insight into

species conservation status is population size

(Butchart et al. 2004). In practice, however, data

on species abundance are often not available or too

expensive to collect. Use of expert opinions to

make decisions on species conservation categories

when there is a lack of reliable knowledge of spe-

cies abundance and distribution is common

(Putland 2005). Moreover, there is recently an in-

creased practice of using species distribution mod-

els (hereafter SDMs; Guisan & Zimmermann

2000, Guisan & Thuiller 2005) to characterize pat-

terns of species’ occurrence and abundance

(Pacifici et al. 2017). The outputs of SDMs are re-

lated not only to the probability of occurrence, but

also to other key parameters of populations such as

abundance (Weber et al. 2016, Fois et al. 2018).

Although the suitability is not able to predict the

actual abundance as there is a commonly triangu-
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lar relationship between predicted suitability for

species occurrence and abundance (Acevedo et al.

2017), it is possible to determine maximum abun-

dance that a population can attain without com-

pletely explaining abundance in all localities (Vaz

et al. 2008). This relationship offers the use of

SDMs to estimate species abundance, thus provid-

ing more useful information for management and

conservation goals (Yin & He 2014).

SDMs are statistical techniques used to predict

the distribution of a species, based upon relating

the observed distribution to several environmental

variables (Austin 2007, Elith & Leathwick 2009).

Their applications in the broad context of conser-

vation biology are widely demonstrated (Guisan &

Thuiller 2005, Visconti et al. 2016). Such applica-

tions are especially important for rare and threat-

ened species with high conservation priority

(Guisan et al. 2013). However, many studies indi-

cate that using a high number of environmental

predicators in relation to few occurrence records

can lead to reduced model accuracy which makes

producing accurate models of rare species’ occur-

rence difficult (Stockwell & Peterson 2002, Wisz

et al. 2008).

Poor applicability of standard SDMs to new

data due to over-fitting restrictions (Vaughan &

Ormerod 2005) combined with the importance of

being able to predict rare species’ occurrence over

new areas for conservation planning, encourages

conservationists to use cutting-edge SDM tech-

niques. Ensembles of Small Models (hereafter

ESMs) are a novel strategy proposed to circum-

vent this issue when predicting the distribution of

rare species (Lomba et al. 2010). ESMs are appli-

cable with various standard SDM techniques, and

are built by fitting a large number of small bi-

variate models and then averaging them into an en-

semble model where the small models are

weighted by their cross-validated scores of predic-

tive performance (Breiner et al. 2015).

The outstanding performance of ESMs to

model rare species distribution (Breiner et al.

2015) encouraged the use of this approach on Cau-

casian grouse Lyrurus mlokosiewiczi, which have

a restricted geographic range and only a small

dataset (22 occurrences; Habibzadeh & Rafieyan

2016) in Iran. The Iranian population is the south-

ernmost point of the species’range and is confined

in the northwest of Iran (Gavashelishvili &

Javakhishvili 2010). Caucasian grouse is found on

steep slopes of subalpine and alpine meadows cov-

ered by widely scattered dwarf shrubs (e.g., rhodo-

dendron thickets) but in proximity to deciduous

broad-leaf forest (Klaus et al. 1990, Gavashelish-

vili & Javakhishvili 2010, Habibzadeh & Rafieyan

2016).

Caucasian grouse is endemic to the Greater

and Lesser Caucasus Mountains and categorized

as Near Threatened on the IUCN Red List (Bird-

Life International 2018). It is the only representa-

tive of the family Tetraonidae in this region (Pota-

pov 2008). Caucasian grouse has the smallest

range of any grouse species (Baskaya 2003,

Gavashelishvili & Javakhishvili 2010) and this

range is highly fragmented (Gavashelishvili &

Javakhishvili 2010).

Consequently, Caucasian grouse is one of the

least studied grouse species (Baskaya 2003). A

few studies have investigated the lek habitat of the

Caucasian grouse (Gottschalk et al. 2007, Gava-

shelishvili & Javakhishvili 2010, Habibzadeh et

al. 2010, 2013, Habibzadeh & Rafieyan 2016).

Habitat loss and transformation are thought to be

the major threats to the species, with many of the

subalpine meadows within its range being used for

intensive grazing (Storch 2007). In the Lesser

Caucasus, gentler terrain, road construction and

changes in land use provide relatively easy access

for developers and hunters, contributing to in-

creased disturbance and habitat degradation

(Gavashelishvili & Javakhishvili 2010).

In Iran, a scarce and very local resident popula-

tion of Caucasian grouse, which was first con-

firmed for Iran in 1971 (Scott 1976), is distributed

within the Arasbaran region in East Azerbaijan

province (Habibzadeh et al. 2010, Habibzadeh &

Rafieyan 2016). Based on some reported counts,

Khaleghizadeh et al. (2011) stated that the Iranian

Caucasian grouse population had increased from

215 to 350 individuals between 2001 and 2009.

Based on our knowledge about this peculiar spe-

cies, the documented studies of population size es-

timation have not pointed out any details on their

estimating approaches and so it is difficult to as-

sess reliably Caucasian grouse population size and

claim an increasing trend in Iran. According to

Habibzadeh & Rafieyan (2016), the number of 27

breeding display sites (Habibzadeh et al. 2010) de-

creased to 22 lek sites within four years (2010–
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2014) due to habitat destruction arising from in-

creased development and overgrazing.

As Caucasian grouse population estimation by

formal field techniques is difficult due to vast, rug-

ged and climatically inclement areas (Gavashe-

lishvili & Javakhishvili 2010), in this paper we

merged the important environmental variables of

previous studies (Gottschalk et al. 2007, Gava-

shelishvili & Javakhishvili 2010, Habibzadeh &

Rafieyan 2016) into ensembles of small bivariate

models to predict Caucasian grouse distribution

across Iran. We then used these models to estimate

the abundance of grouse in Iran using a low cost

preliminary assessment with the few available oc-

currence records.

2. Materials and methods

2.1. Study area

We used the Caucasian grouse range (Habibzadeh

& Rafieyan 2016) in the north-western Iranian up-

lands, covering the Lesser Caucasus, for conduct-

ing our study (Fig. 1). The grouse’s range falls

within one major region, Arasbaran, which consti-

tutes the southern stretches of the Caucasus

(Transcaucasia) (Asef & Muradov 2012). It is in a

highly mountainous region rising from 256 to

2896 m above sea level (Parsa et al. 2016) which is

located in the mixed mountainous systems biome

(Shokri et al. 2004). The Arasbaran region con-

sists of two distinct herder groups using the same

summer rangelands: local villagers and nomads.

Villagers occupy the rangelands where they sub-

sist on livestock husbandry and farming, while the

herding nomads move between the high range-

lands and the foothills (Tashakori 2008). More in-

formation on regional characteristics can be found

in Habibzadeh & Rafieyan (2016).

2.2. Sampling points

For this study, data on species occurrences (pres-

ence-only) included Caucasian grouse lek occur-

rences (Masoud 2004, Habibzadeh et al. 2013)
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verified by Habibzadeh & Rafieyan (2016) using

morning (0.5 h before sunrise until 2.5 h after sun-

rise) and evening (2 h before sunset until sunset)

foot and roadside surveys in spring 2013 and 2014,

from mid–April to late May.

Since all SDMs require data on locations from

which the subject is absent, and false absences can

decrease the reliability of prediction models

(Chefaoui & Lobo 2008), we used the “pseudo-ab-

sence” approach. Following the recommendations

of Elith et al. (2006), one third of the available

background modelling cells were randomly samp-

led across the study landscape at a minimum dis-

tance of 472 meters (see below) from each other,

and also 1.1 km from presence locations to reduce

the probability of false absences. We chose 1.1 km

because there was a median autocorrelation of

1.05 km among environmental variables com-

puted using R package blockCV (Valavi et al.

2018). For modelling, our dataset consisted of 22

Caucasian grouse lek occurrence records plus

1,000 pseudo-absence points.

2.3. Natural environmental variables

Since the reliability of species distribution model-

ling is based on selecting ecologically relevant en-

vironmental predictors (Elith & Leathwick 2009),

we calculated land-cover, topographic and anthro-

pogenic variables according to their acknowl-

edged relevance to Caucasian grouse lekking be-

haviour (Gottschalk et al. 2007, Gavashelishvili &

Javakhishvili 2010, Habibzadeh et al. 2010, 2013,

Habibzadeh & Rafieyan 2016). We computed pre-

dictor variables within a 472-m radius or 70-ha cir-

cle, which corresponds to the maximum size of a

Caucasian grouse lek on subalpine meadows

along the treeline of the Little Chatipara, North

Caucasus (Klaus et al. 1990). This scale also

matches the minimum yearly home-range size of

male Eurasian black grouse (Lyrurus tetrix) (mean

155 ha, range 70–236 ha; Starling 1992), a better-

studied congener.

We used the Climate Change Initiative-Land

Cover (CCI–LC) data version 1.6, provided by the

European Space Agency (ESA) at almost 300-m

spatial resolution for the 2010 epoch, which con-

tains 22 primary and 14 sub-level land cover

classes (ESA 2014). Our study area includes 16

primary classes (rain-fed croplands; irrigated or

post-flooding croplands; mosaic cropland (> 50%)

and natural vegetation (< 50%); mosaic natural

vegetation (> 50%) and cropland (< 50%); tree

cover, broadleaved, deciduous, closed to open

(> 15%); tree cover, needleleaved, evergreen,

closed to open (> 15%); tree cover, mixed leaf type

(broadleaved and needleleaved); shrubland; grass-

land; mosaic tree, shrub (> 50%) and herbaceous

cover (< 50%); mosaic herbaceous cover (> 50%),

tree and shrub (< 50%); sparse vegetation (< 15%);

shrub or herbaceous cover, flooded, fresh or saline

or brakish water; urban areas; bare areas; water

bodies) and one sub-level land cover class (tree

cover, broadleaved, deciduous, closed (> 40%)).

We imported this land cover layer to FRAG-

STATS 4.2 (McGarigal et al. 2012) and used a

moving window of the chosen scale (472-m radius

circle) to compute three land-cover variables: 1)

the proportion of mosaic tree and shrub (> 50%)

and herbaceous cover (< 50%), 2) the proportion

of sparse vegetation (tree, shrub, herbaceous

cover) (< 15%), and 3) patch richness (number of

different patch types of 17 land cover classes).

Using the Advanced Space borne Thermal

Emission and Reflection Radiometer (ASTER)

Global Digital Elevation Model (GDEM) (AS-

TER GLOBAL DEM with a 3 arc-second (~ 90-

m) pixel size, available on: https://lpdaac.usgs.

gov), the most important factors describing topo-

graphic context were compiled: slope, sine and co-

sine of aspect, elevation, roughness and topo-

graphic exposure index (TOPEX). The roughness

(as an index of irregularity of the surface) was cal-

culated by the largest inter-cell difference of a cen-

tral pixel and its surrounding cell (Wilson et al.

2007). The topographic exposure raster layer was

generated using a model developed and provided

by the Windthrow Research Group, University of

British Columbia, Vancouver, Canada. The script

calculates an index of exposure that is the summa-

tion of the maximum and minimum angles to the

skyline within a user-specified distance in the

eight cardinal directions (Perry & Wilson 2010).

An exposure grid was produced for this study, sim-

ulating unweighted exposure at a 472-m limiting

distance.

Following Gottschalk et al. (2007), the dis-

tance to settlements and roads was used for model-

ling to account for anthropogenic disturbance,

such as poaching, predation by shepherd dogs and
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nest destruction by livestock. We used high resolu-

tion image tiles in Google Earth version 5.1 to ex-

tract road and settlement layers.

To provide congruence between the scales at

which we measured environmental variables, we

resampled topographic and anthropogenic vari-

ables to the pixel size of land-cover grids using av-

erage aggregation method and each layer was con-

verted to the study’s geographic projection.

Finally, variable redundancy within environ-

mental variables was checked by Spearman’s rank

correlation (Supplementary information, Fig. S1).

If two variables were highly correlated (r � |0.7|),

the one which ranked lower in univariate models

with the response variable was excluded to avoid

collinearity. In this step, we also removed remain-

ing predictor variables with Variance Inflation

Factor (VIF) values larger than three (Zuur et al.

2007). The VIF is used to measure the degree of

multi-collinearity of the ith independent variable

with the other independent variables in a regres-

sion model (O’brien 2007).

We used the usdm-package (Naimi 2015) for

the R environment (R Development Core Team

2014) to test the VIF. The package deploys a

stepwise backward selection procedure to obtain a

parsimonious model. This was accomplished by

removing one variable at a time (the one with the

highest VIF > 3) and recalculating VIF after each

iteration until a set of non-collinear variables was

obtained. Since roughness and slope showed high

collinearity (Supplementary information, Fig. S1),

we maintained slope because this variable has

been shown earlier to have an influence on Cauca-

sian grouse presence (Gavashelishvili & Javak-

hishvili 2010). The remaining ten environmental

variables were used as the predictor variables

(Table 1) both for modelling and projection. All

GIS data were prepared and analyzed in QGIS

(QGIS Development Team 2014).

2.4. Modelling techniques

and ensemble forecasting

We fitted ESMs with generalized boosted models

(GBMs; Friedman et al. 2000, Friedman 2001)

and maximum entropy (Maxent; Phillips et al.

2006) to produce models with a high predictive

performance and transferability (Breiner et al.

2018). In our study, a set of 10 uncorrelated predic-

tors resulted in 45 bivariate predictor combina-

tions. We evaluated each of the bivariate models

using 10-fold cross-validated Area Under the re-

ceiver operating characteristic Curve (AUC;

Fielding & Bell 1997, Lobo et al. 2008) value,

which was then used to build a Somers’ D

weighted average of the 45 bivariate models as the

ESM prediction (Breiner et al. 2015). Somers’D is

D = 2 × (AUC–0.5) and gives more weight to mod-

els that perform well and less to those that perform

poorly. Bivariate models with a Somers’ D lower

than 0 (i.e., AUC < 0.5) were set to zero and not

used to build the ESMs (Breiner et al. 2015).

An indication of the contribution of each envi-

ronmental variable in the ESMs calculated based

on the difference in bivariate model weights where

the variable was used compared to all bivariate

model weights (Broennimann et al. 2018). One

ESM was built for each modelling technique (i.e.,

ESM based on bivariate GBM (ESM
GBM

) and

bivariate MaxEnt models (ESM
MaxEnt

)). We then

built a final ensemble prediction (ESM
EP

) by aver-

aging across these two ESMs, again using Somers’

D weights (Breiner et al. 2015).

The distribution models were evaluated using

two different sets of data. First, we separated our

modelling dataset (22 presences and 1,000

pseudo-absences) into ten folds for cross-valida-

tion. We randomly allocated spatially segregated

blocks to calibration and evaluation bins (folds)

using R package blockCV (Valavi et al. 2018). To

do so, we used the package blockCV to look at the

existing autocorrelation in the environmental pre-

dictors based on 1,000 sampling points taken from

each input environmental raster layer. This pack-

age uses an isotropic variogram to show the spatial

autocorrelation ranges of input raster covariates

and then the optimal block size is selected based on

median spatial autocorrelation range across all in-

put data (Valavi et al. 2018). We chose the size of

spatial blocks equivalent to 2,200 meters which

was substantially bigger than the range of spatial

autocorrelation (1,050 meters) to obtain a good es-

timation of error (Roberts et al. 2017).

As the species’ occurrence localities had a

clumped pattern in the study area (Fig. 2), we also

checked that block-to-fold allocations achieved

the most even spread of species data across folds.

Second, we used four independent species pres-
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ence records (Gavashelishvili & Javakhishvili

2010) and 400 generated pseudo-absences from

the southernmost part of Armenia for evaluating

the models independently (i.e., a transferability as-

sessment).

2.5. Model evaluation

We used two indices to evaluate model perfor-

mance: 1) the AUC and 2) the Boyce index as a

presence-only index (Hirzel et al. 2006). The

Boyce index varies from –1 to 1, where positive

values indicate a model whose predictions are con-

sistent with the presences distribution in the evalu-

ation dataset, values close to zero mean that the

model is not different from a chance model, and

negative values indicate an incorrect model, which

predicts poor quality areas where presences are

more frequent (Hirzel et al. 2006). We used the R

packages “biomod2” (Thuiller et al. 2009),

“dismo” (Hijmans et al. 2017) and “ecospat”

(Broennimann et al. 2018) to build and evaluate

ESMs.

2.6. Estimation of population size

For population size estimation, we projected the

best ESMs according to their transferability per-

formance to a larger area that includes meadows in

proximity to the forest line as a potential suitable

habitat (Gottschalk et al. 2007, Gavashelishvili &

Javakhishvili 2010, Habibzadeh et al. 2013,

Habibzadeh & Rafieyan 2016) to generate predic-

tion maps. This larger area which stretched from
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Fig. 2. Probability of Caucasian grouse occurrence in Iran and the southern parts of Armenia and Azer-
baijan according to the Ensemble of Small Models fitted using the generalized boosted model (ESM

GBM
).

Darker shades show areas with a high probability of occurrence, lighter shades indicate low probability of
occurrence. The green dots show the locations of lekking sites used to fit the model. The numbers inside
the black polygons indicate three main landscapes including Kringan village (1), Molk-e-Talesh, Vanestan
and Khoinaroad villages (2), and Kharil, Mazgar, and Makidi villages (3) which cover the predicted distribu-
tion of Caucasian grouse in Iran. The polygons marked by blue and red lines highlight the core predicted
grouse distribution in southern Armenia and Azerbaijan, respectively.



46.28° N and 38.64° E to 47.23° N and 39.13° E

(Fig. 1) is only potential suitable habitat within the

southernmost part of Caucasian grouse’s known

range (Gavashelishvili & Javakhishvili 2010). The

best model’s prediction map was used to estimate

Caucasian grouse population size by applying two

alternative published average densities of 2.3 birds

km
2
(Drovetski & Rohwer 2000) and 4.8 birds km

2

(Potapov 1985) on ensemble map occurrence

probabilities weighted as follows (Gottschalk et

al. 2007, Gavashelishvili & Javakhishvili 2010):

N = da pi

i

n

�

�
1

(1)

where N is the total population size, d is the grouse

density (birds km
2
), a is the cell area (km

2
), pi is the

probability of occurrence value from the ensemble

map in the ith cell of the study area, and n is the

number of cells in the study area. Cells of the pre-

diction map were excluded from our analysis if

they had a probability of occurrence value lower

than the average value for Caucasian grouse pres-

ence points. Since our goal was to assess whether

Caucasian grouse in Iran is threatened, we adopted

this threshold to avoid inflating the population es-

timate by allowing for low densities of birds to oc-

cur in cells which are likely to be truly unoccupied

(Freeman & Moisen 2008). We also excluded the

parts of the prediction map that were outside of

Iran (i.e., in Armenia and Azerbaijan) from the

analysis estimating Caucasian grouse population

size for Iran (Fig. 1). Based on the same threshold

used to exclude cells with a probability of occur-

rence value lower than the average value for Cau-

casian grouse presence points, we also identified

how much of the Caucasian grouse range in Iran

includes favorable habitat.

3. Results

The variables CA_100 (proportion of mosaic tree

and shrub (> 50%) and herbaceous cover (< 50%))

and ELV (elevation) had the highest importance

values, whereas the remaining variables were of

low importance in the ensemble of small models.

ELV contributed 99% and 100% to ESM
GBM

and

ESM
MaxEnt

models followed by CA_100 (76% and

58%), respectively (Supplementary information,

Fig. S2).

The models’ performance based on the mean

AUC (± standard error) between ESMs on 10-fold

cross validation all showed good overall predic-

tion accuracy (Swets 1988; Fig. 3; ESM
GBM

= 0.97

± 0.04, ESM
EP

= 0.97 ± 0.04, ESM
MaxEnt

= 0.97 ±

0.04). However, their performances based on

AUC on the geographically independent dataset

differed, with ESM
GBM

(0.97) and ESM
EP

(0.90)

performing better than ESM
MaxEnt

(0.85).

ESM
GBM

showed the highest transferability

(the Boyce index) both given by the 10-fold cross

validation (0.78 ± 0.30; Fig. 3) and the geographi-

cally independent dataset (0.96) than ESM
MaxEnt

(0.71 ± 0.30; 0.93) and ESM
EP

(0.59 ± 0.35; 0.94).

If no true absences are available, the Boyce in-

dex provides a better evaluation criterion than

AUC when modelling rare species (Breiner et al.
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Ensemble of Small Models
(generalized boosted model
(GBM), maximum entropy
(MaxEnt), and ensemble
prediction (EP) according to
AUC and the Boyce index
evaluated with the testing
data from the 10-fold spa-
tially segregated dataset.
Higher values indicate
better performing models.



2015). Transferability performance is of impor-

tance if projections and inferences extend beyond

the conditions represented by the data used to fit

the model (Wenger & Olden 2012). Because

ESM
GBM

showed higher transferability perfor-

mances than ESM
MaxEnt

and ESM
EP

given the

Boyce index and AUC criteria, we chose ESM
GBM

prediction map to estimate Caucasian grouse po-

pulation size. Based on the estimated species’den-

sities (Drovetski & Rohwer 2000, Potapov 1985)

and the probability scores of the ESM
GBM

map

which ranged from 0.24 to 0.90 (Fig. 2), Caucasian

grouse population size for Iran, the southern parts

of Armenia and Azerbaijan was estimated to be

about 98–196, 24–48 and 6–12 birds, respectively.

The center point of the Iranian Caucasian grouse

population has approximately a distance 54 and 35

km from the centers of the Armenian and

Azerbaijan populations.

We set the average threshold for suitability of

habitat for Caucasian grouse at a probability of oc-

currence equal to 0.56, based on the average prob-

ability value for Caucasian grouse presence

points. On this basis, a total area of 63.5 km
2
out of

3,358.1 km
2

was identified as suitable landscape

for Caucasian grouse in Iran.

4. Discussion

Our results indicated that elevation and percent

cover of mosaic tree and shrub (> 50%) and herba-

ceous cover (< 50%) are key determinants under-

lying the spatial configuration of Caucasian

grouse leks in 70-ha landscapes. For Caucasian

grouse as a subalpine obligated species during

lekking (Storch 2000), mosaic tree and shrub

(> 50%) and herbaceous cover (< 50%) appears to

be one of the main determinant factors of spatial

distribution. The previous reports (Gottschalk et

al. 2007, Gavashelishvili & Javakhishvili 2010)

clearly confirmed that elevation and the vicinity of

forest edges are of great importance for determin-

ing Caucasian grouse distribution.

In our study area, landscapes around lek sites

are covered by widely scattered dwarf shrubs e.g.,

Rhododendron caucasicum thickets. The struc-

tural and physiological characteristics of subal-

pine shrubs provide both main feeding resources,

particularly in winter, and excellent cover from

avian predators. During the breeding and display

season, tree species such as birch (Betula litwino-

wii), oak (Quercus macranthera), and beech (Fa-

gus orientalis) allow Caucasian grouse to roost on

the branches of trees close to meadows (Habib-

zadeh et al. 2013) during the night or to avoid rainy

conditions. This is in agreement with knowledge

of Caucasian grouse landscape requirements at the

472-m radii scale from Habibzadeh & Rafieyan

(2016).

The habitat suitability maps produced by

ESM
GBM

(Fig. 2) showed that the predicted Cauca-

sian grouse distribution covers three main land-

scapes. These are the mountain ecosystems of 1)

Kringan village, 2) Molk-e-Talesh, Vanestan and

Khoinaroad villages, and 3) Kharil, Mazgar, and

Makidi villages (Fig. 2) which support 13–26, 24–

48, and 61–122 birds, respectively. This result

shows that the Caucasian grouse population is

probably distributed in a meta-population pattern,

or living as isolated subpopulations given the spe-

cies’ sedentary habits (Isfendiyaro�lu et al. 2007)

and its inability for long-distance movements (M.

Masoud, Personal communication).

Population isolation, accompanied by a small

population (98–196 birds), limited suitable habitat

(63.5 km
2

out of 3,358.1 km
2
), and population-

specific climate conditions in the south-eastern

Lesser Caucasus (Habibzadeh et al. in press) could

result in a high influence of stochastic variation on

the Caucasian grouse populations in Iran. How-

ever, future population genetic research may as-

sess the validity of this assumption. Clearly, our

estimate of 98–196 individuals provides good evi-

dence to consider with caution the number of Cau-

casian grouse (350 individuals) reported by

Khaleghizadeh et al. (2011) that was based on

some unpublished data compiled by M. Masoud.

Based on the good prediction performance of

our ESM
GBM

, it could be used as a tool by the Ira-

nian Department of Environment (DOE) for iden-

tification of potential habitats and population

monitoring of Caucasian grouse over its entire

range in Iran. Additionally, the model can contrib-

ute to important habitat management questions,

such as which locations might be most suitable for

habitat restoration efforts. The prediction map also

indicated that the southern parts of Azerbaijan and

Armenia provide a small suitable habitat for Cau-

casian grouse (16 km
2

out of 921.3 km
2
; Fig. 2).

Although the southern part of Azerbaijan supports
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a very small number of the species (6–12), the bird

probably survives by trans-boundary migration

which is facilitated with naturally well connected

trans-boundary habitats.

Species distribution modelling methods which

predict species distributions are an important tool

for supporting conservation decisions, facilitating

the link between modellers and decision makers

(Guisan et al. 2013). In addition, the IUCN has be-

gun to explicitly incorporate SDMs to estimate ex-

tent of occurrence as an extinction risk parameter

and to explore the potential impacts of climate

change on species’ distributions (Cassini 2011).

Here we used a powerful strategy for modelling

rare species distributions, namely ESMs based on

bivariate models (Breiner et al. 2015), to describe

the potential distribution of Caucasian grouse in

Iran and, in turn, its potential population size.

The vertebrates’ studies benefit from SDMs as

a useful proxy of abundance, although the general

relationship between abundance and suitability is

moderate (Weber et al. 2016). The study of large-

scale abundance patterns using species distribu-

tion modelling can be done with low survey costs

and less information (Weber et al. 2016). Most

previous studies have found a positive relationship

between modelled habitat suitability for a species

and species’ abundance on a local scale (Weber et

al. 2016). Nevertheless, the validity of treating

probability of occurrence as a surrogate for abun-

dance is still questionable, as the relationship be-

tween the two has been found to vary with time,

species, and spatial scale (Johnston et al. 2015).

Since the relationship between habitat suitability

and species abundance is triangular (VanDerWal

et al. 2009), the outputs of our ESMs as surrogates

of species abundance should be considered as the

upper limit of abundance that Caucasian grouse

can reach in a locality given its environmental

characteristics, not the actual abundance (Muñoz

et al. 2015, Acevedo et al. 2017).

Also, if the small number of lek locations used

as presence points poorly represent the species’

true occurrence over the study area due to biased

sampling, the essential assumption of presence-

only SDMs may not be met (Phillips et al. 2006).

Because the lek survey was made from the ground,

more accessible leks (due to such factors as road

conditions and the distance travelled to reach the

lek) might be more likely to be included in the

sample. This outcome could represent conve-

nience sampling (Anderson 2001) and may gener-

ate inaccuracies in SDMs (Gomes et al. 2018).

Although, the sampling method was biased to

be closer to roads, the distance to road was not a

significant variable in any of the models. So, our

results were robust to this bias. There may also be a

potential concern over the dataset used in our

study which was mainly collected using field sur-

veys in spring and autumn when Caucasian grouse

concentrate near leks. However, the lek sites can

be interpreted as the core area of Caucasian grouse

distribution, because grouse use the additional

areas close to lek sites in summer (Etzold 2005)

and winter (Klaus & Vitovich 2006).

Our study did not assess disturbance by do-

mestic animals at lek sites, thus it may be that many

sites that appear suitable according to these models

may have high levels of disturbance making them

unattractive locations for breeding Caucasian

grouse. Moreover, including all spatially refer-

enced occurrence locations for a species in geo-

graphic space in its occupied niche is of limited

value in conservation planning without estimates

of population demography (e.g., survival prob-

ability) (Kahler & Cavalieri 2014). Therefore, if

ecological niche modelling with species pres-

ence/absence data is applied without accounting

for source/sink dynamics, results will include pre-

dictions of areas likely to serve as either popula-

tion sources or sinks (Kahler & Cavalieri 2014).

Although our use of fine resolution data could

have good predictive discrimination compared

with Gavashelishvili & Javakhishvili (2010), we

also must take into account the limits of the species

distribution modelling approach for estimating

species abundance. Related findings indicated that

low habitat suitability may occur in areas of high

abundance, probably due to environmental fac-

tors, correlated with forest structure, productivity,

the degree of fragmentation, and climate that are

not considered in modelling which may increase

the actual environmental suitability of the area

(Basile et al. 2016). Conversely, some unmeasured

environmental factors, such as stochastic weather

events, or biological constraints such as biotic in-

teractions or limited dispersal capabilities, may

hinder higher abundance in otherwise highly suit-

able areas (VanDerWal et al. 2009).

Therefore the distribution map generated by
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our final ESMs should be used with caution. Fu-

ture work should focus on compiling additional

field data on population distribution and abun-

dance to carry out an assessment of the model’s

predictive performance and, once more presence

data are available, consider incorporating addi-

tional variables into a similar analysis. For exam-

ple, biologists familiar with Caucasian grouse hab-

itat requirements should visit sites where the

model predicts a high probability of occurrence, to

evaluate the model’s accuracy. However, the spe-

cies’ absence at such sites may also be caused by

the triangular relationship between habitat suit-

ability and species abundance (VanDerWal et al.

2009).

Gavashelishvili & Javakhishvili (2010) pre-

dicted suitable habitat for Armenia, although their

map provided no suitable patch across the south-

ern part of Azerbaijan. These differences might be

due to the existence of cross-correlation and re-

dundancy issues among habitat variables that en-

tered the models, different spatial resolutions of

the environmental layers or modelling techniques.

Gavashelishvili & Javakhishvili (2010) used sev-

eral modelling techniques including logistic re-

gression, classification and regression tree, Maha-

lanobis distance, and maximum entropy to model

the species’ habitat suitability by relating the pres-

ence and absence locations of the species to envi-

ronmental variables with 1 km spatial resolution.

Our study indicates that the Caucasian grouse

population size in Iran is much less than required

to maintain the evolutionary potential or viable po-

pulation of a species (500 individuals; Jamieson &

Allendorf 2012) and to prevent the loss of quanti-

tative genetic variation (5,000 individuals; Frank-

ham 1995). Therefore, if the species lives in isola-

tion from its northern populations (in Azerbaijan

and Armenia) the further hesitation of species con-

servationists to build connectivity between these

populations will move Caucasian grouse further

towards local extinction in Iran.
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Kaukasianteeren populaatiokoon

mallintaminen Iranissa

Populaatiokokoon määrittäminen on äärimmäisen

tärkeää tehokkaiden suojelutoimien kannalta.

Kaukasianteeren populaatiokoosta on hyvin vä-

hän tietoa. Tutkimuksemme tarkoituksena oli sel-

vittää kaukasianteeren levinneisyyttä ja populaa-

tiokokoa käyttämällä mallinnusmenetelmää

(ESM), joilla tiedetään olevan erinomainen kyky

mallintaa harvinaisten lajien levinneisyyttä.

Käytimme GBM ja MaxEnt mallinnusta, ja ra-

kensimme lopulliset malliennusteet näiden kes-

kiarvon perusteella. Analysoimme 10 eri ympäris-

tömuuttujaa (maankäyttö-, kaupunki- ja topografi-

sia muuttujia), jotka selvitettin 70 hehtaarin alata

22 kaukasianteeren soidinpaikoilta. Käytimme

parhaan mallin ennustekarttaa kaukasianteeren

populaatiokoon ennustamiseen Iranissa. GBM

mallit suoriutuivat paremmin kuin muut useim-

missa testeissä. Omien malliemme, ja aiemman

kirjallisuuden perusteella kaukasianteeren popu-

laatiokoko Iranissa on 98–196 yksilöä, mikä on

huomattavasti vähemmän kuin aiempien arvioin-

tien 350 yksilöä. Tuottamaamme lajin esiintymi-

sen ennustekarttaa voidaan käyttää hyväksi valit-

taessa ensisijaisia suojelualueita ja selvitettäessä

vähän tutkittuja alueita.
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