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We investigated the performance of hierarchical distance sampling (HDS) versus bino-
mial N-mixture (binmix) models, both aiming at abundance (or, equivalently, density) es-
timation. We tested the accuracy of density estimates using simulated data and compared
them to the estimates coming from a Red-breasted Flycatcher (Ficedula parva) point
count survey in the Darzlubie Forest (N Poland). In both the simulations and the actual
data, we mimicked varying plot size (i.e., radius length, and site area) and song loudness
from quiet to loud by modifying detection functions. We found that the resolution at
which distance detection data are collected (i.e., the number and width of distance classes)
had essentially no effect on estimates and their precision in HDS, even when birds were
only assigned into two, wide distance classes, such as “close” and “far”’. Both site size (ra-
dius length) and song loudness affected density estimates in HDS only slightly: a positive
bias (by 5%—17%) occurred when sites were small and a lower precision occurred for
quiet singers. In general, however, estimates from HDS were accurate. In contrast, under
binmix, density was heavily overestimated at smaller sites, but apparently correct at large
sites. The latter may stem from the counterbalancing effects of overestimation at close
distances and underestimation at large distances that cancel each other out on average,
both of which are a function of song loudness and arise always when the observer is sta-
tionary. When applied to point count results, binmix models must be used with care, as the
song loudness in relation to site size seems to affect abundance estimates. We suggest that
when density (or population size) estimation is of interest, and with a limited number of
visits, a study using point counts would profit from applying HDS models by using addi-
tional information on detection distances, even at low resolution. This cost-effective op-
tion represents an attractive alternative to be considered vs. simpler counts during which
just the number of birds is noted.

;‘J KOLLEGIALT GRANSKAD

' PEER-REVIEWED

www.tsv.fi/tunnus



132

1. Introduction

Animal abundance is of primary importance in un-
derstanding ecological relationships and tracking
changes in numbers, which is crucial for conserva-
tion (Williams ef al. 2002, Kéry & Schaub 2012).
Perhaps the most accurate method developed to
measure avian density, the spot-mapping (To-
miatoj¢ 1980, Bibby et al. 2000), particularly
when coupled with individual marking and nest
search, is too time-consuming to be applied to
larger areas. Quick methods developed as cost-ef-
ficient alternatives, such as point counts, fre-
quently miss some individuals due to their much
smaller field effort while density can be estimated
from replicated visits with the models accounting
for imperfect detection (MacKenzie et al. 2006,
Kéry & Royle 2016). Distance sampling method-
ology, which does not require temporal replica-
tion, represents another option for density estima-
tion (Buckland et al. 2015).

However, some models which are able to cor-
rect for imperfect detection — the binomial N-mix-
ture model (Royle 2004) in particular — when
applied to point count data, have been shown to ei-
ther overestimate density (Chandler et al. 2011,
Hunt et al. 2012, O’Donnell et al. 2015) or the di-
rection in the density bias was density-dependent
(Warren et al. 2013). N-mixture models are also
sensitive to even small violations of model as-
sumptions or unmodeled heterogeneity in either
abundance, detection or both (Barker ef al. 2017,
Link et al. 2018). On the other hand, multiple stud-
ies have demonstrated the accordance between N-
mixture model estimates and the more robust cap-
ture-mark-recapture estimates (Costa et al. 2019)
or the actual population size (Botsch et al. 2020).
Because hierarchical models are still a relatively
new branch of ecology, further studies validating
their performance in simulations and case studies
are needed (Dénes et al. 2015). This is still impor-
tant in the case of the commonly used binomial N-
mixture model.

How accurately a given model estimates den-
sity can only be tested in simulations (Kéry &
Royle 2016). Simulation results can then be com-
pared to estimates from actual data. In this paper,
we use both simulations and true data collected
during a point count survey to compare density es-
timates of the hierarchical distance sampling

ORNIS FENNICA Vol. 97, 2020

model (hereafter HDS, Kéry & Royle 2016) and
the binomial N-mixture model (hereafter binmix,
Royle 2004). The basic difference between the re-
spective field protocols is in how the data are col-
lected: with the distance sampling approach, de-
tection distances of individuals are recorded, while
the simpler version of data used by binmix models
ignores this information (just the sum of individu-
als is noted). Our primary interest was to find out
whether radius length (i.e., site area) within the
point counts field protocol affects density esti-
mates under each model and whether this depends
on the loudness of songs. Additionally, we also
tested if the number and width of distance classes
(distance sampling approach only) affect density
estimates in both simulated and actual data.

2. Materials and methods
2.1. Abundance models

Distance sampling methodology is based on the
fact that the probability of detection declines with
distance, so individuals at greater distances are
more frequently missed by the observer. The
curvilinear detection function, whose parameters
are estimated within distance sampling models,
describes this relationship, and allows to estimate
the effective detection radius and thus the effective
area, and, in consequence, true density (or, equiva-
lently, abundance) because the area effectively
surveyed becomes the known quantity. With de-
tection distances and repeated surveys in our field
study of the Red-breasted Flycatcher (Ficedula
parva, see section 3.3. below), our choices for den-
sity estimations were hierarchical distance samp-
ling models (HDS, Kéry & Royle 2016) from the
R unmarked package (Fiske & Chandler 2011).
Apart from abundance or density and detection
function, HDS models estimate another parameter
of interest, called availability (Chandler et al.
2011, Kéry & Royle 2016), which describes the
proportion of individuals available for detection.
An individual might not be available for detection
if it does not sing, or temporarily leaves the site, if
the site is only partly overlapping with its territory,
thus density can be estimated as the product of
abundance and availability. The most important
assumptions for the distance sampling methodol-
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ogy are that the distribution of animals is inde-
pendent of observation points (or other locations),
distance is measured exactly, animals are detected
at their initial location and that animals positioned
at the observation point are detected with certainty
(HDS models relax the last assumption, see Kéry
& Royle 2016).

A simpler, binomial N-mixture (binmix) mo-
del has been developed to estimate abundance
given imperfect detection (Royle 2004) and has
become very popular in abundance studies. It re-
quires spatio-temporal replication and assumes
that the population is closed over the study period.
HDS models also need temporal replication to
make availability estimable (in contrast to conven-
tional distance sampling where it is missing), and
multiple detections are needed to estimate a detec-
tion function. In conventional settings, density can
be reliably estimated even with a single visit to
transects or points, as information on detection is
extracted from detection distances. Binmix mod-
els only use the number of individuals (e.g., sing-
ing males) recorded at surveyed sites over consec-
utive visits.

Since numbers recorded on the same sites over
consecutive visits are hardly ever the same, then,
under the assumption of population closure, detec-
tion probability is (almost) always less than one.
Therefore, the binmix model allows one to obtain
“true” abundance (i.e., recorded plus missed indi-
viduals). Binmix assumptions require that the po-
pulation is closed over the study period, individual
detections are independent from one another and
the same among individuals (unless heterogeneity
is modeled) and that individuals are not counted
multiple times (i.e., false positives are not present,
Kéry & Royle 2016).

2.2. Simulation study

We performed simulations to explore how accu-
rately HDS and binmix models estimate density.
We used the simHDSopen function from the
AHMbook library, which offers great flexibility in
setting input parameters (Kéry & Royle 2016). We
mimicked our study system while simulating data
(178 sites with a 200 m radius, two primary samp-
ling periods with two replicate surveys, but only
the first used, data collected with detection dis-

tances) and parameters (A = 1.5 individuals per site
and ¢ = 0.8 producing a density of 1.2 individuals
per site, or 0.96 / 10 ha, standard deviation of the
halfnormal detection function, SD =85 or variable
—see below). HDS models with halfnormal detec-
tion functions (preferred in actual data analysis)
were used in all simulations.

First, with 1,000 simulated datasets, we veri-
fied whether the number and width of distance
classes had any effect on density estimates from
HDS models. We grouped the detected number of
males into distance classes of variable and equal
(for simplicity) widths of 10, 20, 25, 40, 50 and
100 m, which reflects 20, 10, 8, 5, 4 and just two
distance classes. We then fitted HDS models to
these datasets to explore the effects of distance
class width on the point estimates and their vari-
ance.

In the second simulation, we were interested
whether, and, if so, how much site area (radius
length) affects density estimates for species whose
songs vary from quiet to very loud. We used the
same input parameters except for the detection
function SD, which we varied to mimic species
across a range of song loudness and its detecta-
bility as a function of distance: from singing qui-
etly, detectable only at close range, to very loud
and detectable at large distances. To achieve this,
we used six fixed values of the halfnormal detec-
tion function SD: 3.5, 4,4.275,4.5,4.75 and 5 (on
the log scale), which translates to effective detec-
tion radii of ¢ 47,77, 100, 120, 144 and 160 m. We
simulated 1,000 datasets for each SD value.

Within each simulated dataset, we created sub-
sets which would emerge if surveys were per-
formed within progressively smaller radii (and
smaller site areas). These subsets were obtained by
(1) grouping distance detection data into ten 20 m
wide distance zones and (2) successively left out
one or more of the most distant zones. This created
nine subsets within a single simulated dataset: the
full dataset included all detections within a radius
0f200 m (ten 20 m wide distance classes), the sec-
ond one missed the most distant 20 m wide zone,
thus had a radius reduced to 180 m (nine distance
classes; all birds detected at 181-200 m excluded)
and so on, up to just 40 m (with two 20 m wide dis-
tance classes and only including birds recorded
within this distance). In all these subsets, detec-
tions were grouped into 20 m wide distance classes
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and both HDS and binmix models were fitted to
each subset. For binmix, we used the same pro-
gressively smaller sites, but with no distance
classes. The 40 m short radius (site area of 0.5 ha)
might seem very small, but similar site sizes are
used in some field studies on birds (e.g., Chandler
et al.2009). In total, 18 models (nine HDS models
and nine binmix models) were fitted to each of the
nine subsets within each of the 6,000 simulated
datasets (1,000 per each song loudness). In this
setting, the radius (and thus the site area) is pro-
gressively smaller, and so is the number of males
detected.

2.3. Red-breasted Flycatcher data

Our study illustrates a not-so-uncommon situatio-
n, where the surveys are spatially rather intensive
(178 observation points), but temporally limited
(just two visits). The actual results come from our
medium-scale survey of the Red-breasted Fly-
catcher, a forest interior passerine, performed in
2016 in one of the most important refugees for the
species in Poland (Sikora et al. 2018).

2.3.1. Study area

The Darzlubie Forest (6,453 ha) is located in
northern Poland (54°37°-54°42> N, 18°12°-
18°22” E). Typical forest communities are decidu-
ous stands with European (Common) Beech
(Fagus sylvatica) — Luzulo pilosae-Fagetum,
Galio odorati-Fagetum and Fago-Quercetum —
along hornbeam subatlantic forest (Stellario holo-
stellae-Carpinetum betuli). The tree species com-
position is currently shaped by forestry in most of
the area, with the dominant tree species repre-
sented by Scots Pine (Pinus sylvestris, 41%), Eu-
ropean Beech (29%) and Norway Spruce (Picea
abies, 9%).

2.3.2. Study species

The breeding range of the Red-breasted Flycatcher
includes central-eastern Europe and small, iso-
lated areas in Asia (Flade 1997). The species has
been apparently stable in Poland over the last two
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decades (Chylarecki ez al. 2018), with a popula-
tion estimated at 16,000-32,000 breeding pairs in
2013-2018 (Chodkiewicz et al. 2019), being more
common in the northern and north-eastern parts of
the country and — particularly — in the Carpathians
(Wilk et al. 2016). The Red-breasted Flycatcher is
a reliable indicator of forest bird biodiversity
(Pakkala et al. 2014). It prefers the interior of de-
ciduous forests with continuous tree crown cover-
age, providing deep shadow in the lower forest
layers and avoids gaps (Fuller 2000), loose stands
and forest edges (author’s unpublished data).

2.3.3. Field surveys

We performed two 5-min long surveys at 178 ob-
servation points embedded in twenty 1 km?2 (1 x 1
km) squares (see Fig. 1 in Sikora et al. 2018) on 9—
12 May (survey 1) and 18-23 May 2016. % of the
observation points were allocated in “optimal”
habitat, defined as either beech or mixed stands
(with beech share of 50% or more) aged > 70
years, while the remaining ones were allocated in
“poor” habitat (i.e., predominantly conifer, or
younger mixed stands). Within each square plot,
observation points were located 200-400 m from
each other. We performed observations between
early morning and afternoon (04:30-16:30 CET),
provided that the species was also actively singing
during the mid-day and afternoon hours (Neu-
bauer & Sikora 2016), in good weather conditions.

During observations at each point, we noted
singing Red-breasted Flycatcher males within a
radius of 200 m (12.6 ha covered). To avoid false
positives (double counting), a male was treated as
a different individual only when countersinging
was recorded. After the 5-min observation ended,
we approached the place from which a male sang
to obtain its geographical coordinates with
GARMIN GPSmap 60Cx, accurate to 3—5 m in
most cases; in a few cases when birds moved or
ceased singing, accuracy could be lower, up to +
10 m. Exact detection distances were then calcu-
lated, producing continuous variable — detection
distances in meters. This allowed a post-hoc
grouping into distance classes of the desired width
for the analysis of the data. We also estimated de-
tection distances during observation in the field
without the knowledge of exact distances (they
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Fig. 1. (A) Simulation results: density estimates for variable number and width of distance classes under
HDS models with the halfnormal detection function. Distance class widths given at the top. Grey horizontal
line shows simulated density value (0.96 males / 10 ha). (B) Red-breasted Flycatcher density estimates for
variable number and width of distance classes under HDS models. Horizontal lines inside the boxes de-
note medians, boxes represent 25%—75% percentiles, whiskers stand for + 1.5 interquartile range, circles
— outlying values. Top row — “optimal” habitat, bottom row — “poor habitat”.

were measured afterwards) and classified each de-
tected male into one of four pre-defined distance
classes (0—50 m; 51-100 m, 101-150 m, 151-200
m).

2.4. Data analysis

We used models sufficiently complex to both an-
swer our questions, and, at the same time, to keep
the whole analysis simple. For HDS models we
used data grouped into distance classes, separately
for both surveys, while the number of males re-
corded at a site on surveys 1 and 2 (temporal repli-
cation) represents the site-level datum for a binmix
model. Both model types, HDS and binmix had
only habitat effect in the submodel for abundance
and thus produced two estimates: for “optimal”
and “poor” habitats. We also fitted HDS models
with survey-dependent availability to address
within-season changes in density, but since they
had slightly worse support while being more com-
plex, we preferred the simpler models (in addition,
within-season change in abundance would not be
possible to address with just two surveys and sim-
ple binmix models).

We kept detection probability in binmix mod-
els and both detection function SD and availability
in HDS constant, which were plausible assump-
tions, given the short study time during the highest
vocal activity of the species. We did not consider a
simpler model with no habitat effect, since the
mean abundance between habitats was so different
that it would not make much sense. We fitted mod-
els using the unmarked package (Fiske & Chan-
dler 2011) in R 3.6.1 (R Core Team 2019) using
gdistsamp (HDS) and pcount (binmix) fitting
functions. We set model outputs to be expressed in
individuals per ha (optional in HDS and available
by adding an offset of log(site area) to the sub-
model for abundance in binmix) which makes
them directly comparable.

Data analysis followed simulations: in the first
analysis, we investigated the effect of the number
and width of distance classes on density estimates.
In the second, progressively smaller site areas
were created, as in the simulation study. To get
variance estimates, we resampled the same (ac-
tual) data with the nonparametric bootstrap tech-
nique and fitted HDS and binmix models to each
resample. In both cases, the bootstrapping proce-
dure was repeated 100 times and the resulting
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Fig. 2. Simulation results: density estimated by HDS models fitted to point count data for hypothetical spe-
cies ranging from quiet (A) to very loud (F) song (see Methods) across increasing radii lengths (site areas).
Estimated density and simulated value (0.096) are given per 1 ha. Remaining denotations as on Fig. 1.
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distributions of parameters were then used to com-
pute the desired statistics (means and their stan-
dard deviations, along with 95% confidence inter-
vals). To each resample, we fitted models with all
four detection functions available in the unmarked
gdistsamp fitting function: half-normal, hazard,
exponential and uniform.

3. Results
3.1 Simulation study

The number and width of distance classes had no
effect on the density estimates: no matter how
many distance classes were used, parameters were
estimated properly (Fig. 1A). Similarly, HDS esti-
mates of density proved to be rather accurate irre-
spective of the song loudness and radius length
(site area) (Fig. 2A—2F). A slight tendency of den-
sity overestimation occurred as the radius and site
area decreased, reaching up to 17% for loud sing-
ers and less for quiet singers (Table 1). There were
also clear differences in the precision of density es-
timates in respect to song loudness: the louder the
song, the more precise the estimates. An upward
bias in estimates of the detection function SD was
evident as site size decreased, reaching 5—17%.

Binmix overestimated density across all radii
lengths, particularly strongly at small sites (Fig.
3A-3F), while keeping the same patterns in terms
of precision as HDS estimates. This becomes evi-
dent when simulation results from both models are
plotted together with the log scale for density (Fig.
4A—4F). In addition, under binmix, there seems to
be an effect of song loudness on density estimates
at the largest sites: density is actually underesti-
mated for quiet singers (Fig. 4A), apparently cor-
rect for species with moderately loud songs (Fig.
4C and 4D) and clearly overestimated for species
with very loud songs (Fig. 4F).

3.2 Analysis of Red-breasted Flycatcher data
3.2.1. Distribution of detection distances
The largest detection distance was about 200 m

with just three out of 148 males recorded were de-
tected at a distance close to 200 m: at 203, 199 and

197 m from the observer. The distribution of Red-
breasted Flycatcher males detections peaked
roughly in the middle of the maximum distance as-
sumed in this study (200 m): between 50—150 m
during Survey 1 (Fig. 5A) and 30-150 m during
Survey 2 (Fig. 5B). There were significantly more
detections in the 0—20 m distance class, the closest
to the observer, during Survey | than during Sur-
vey 2 (Fig. 5C and 5D). The observer’s assignment
of detections into four predefined distance classes
was moderately correct, with the proportion of
correctly assigned detections ranging from 54% to
100%, depending on the distance class and survey
(Fig. 6) —the average percentage of correct assign-
ments across the two surveys and four distance
zones was 75.8%.

3.2.2. Effects of the number
and width of distance classes

There were no clear leaders among the four mod-
els fitted to each of the six datasets differing in the
number of distance classes. The top-supported
models gained AIC weights between 0.34 and
0.56. Models with the halfnormal detection func-
tion were slightly preferred over models with a
hazard detection function (5 out of 6 cases), but
differences in support were small (1 to 3 AIC units,
Table 2). Models with exponential and uniform
detection functions received much less support.

Density estimates under the top models ap-
peared robust to varying number and width of dis-
tance classes (Fig. 1B). The SD of the detection
function was estimated at values around 4.5,
which translates to an effective detection radius of
c 118 m (range 106131 m, Table 3). In all the
cases, availability estimates were close to 1 (mean
0.99, range 0.61-1.00) and did not affect the esti-
mated density strongly (Table 3).

3.2.3. Effects of radius length (site area)

With decreasing radii lengths and site areas (radii
range from the biggest 200 m to the smallest tested
—40 m, and site areas declining accordingly from
12.6 hato 0.5 ha), estimates of density were stable
to a radius of about 120 m under HDS models and
increased with smaller radii (Fig. 7A). Binmix
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Table 1. Results of 1,000 simulations of fitting HDS models to point survey data for hypothetical species
ranging from quiet to very loud song for decreasing radii lengths (site areas). Parameters (with 95% inter-
vals) are given on log (A, abundance and p, detection function SD) and logit (¢, availability probability)

scales.

Radius length

HDS model parameters

Density

/ site area (males/10 ha)
A [0} p
Log SD = 3.5,
effective detection
radius c 47 m
200 m/12.57 ha —1.63 (—2.85; 0.76) 0.03 (-3.56; 7.24) 3.49 (3.28;3.69) 0.94 (0.47; 1.69)
180 m/10.18 ha -1.42 (-2.80; 0.97) -0.36 (-3.76; 7.28) 3.49 (3.28;3.69) 0.94 (0.47; 1.69)
160 m/8.04 ha -1.16 (-2.75; 1.20) —0.76 (—4.02; 7.25) 3.49 (3.28;3.69) 0.94 (0.47; 1.68)
140 m/6.16 ha -0.90 (-2.69; 1.47) -1.12(-4.30;7.21) 3.49 (3.28;3.69) 0.95(0.47; 1.70)
120 m/4.52 ha —0.59 (-2.63;1.78) -1.52(—4.65;7.13) 3.49(3.28;3.72) 0.95(0.46; 1.71)
100 m/ 3.14 ha -0.22 (-2.38;2.14) -1.96 (-5.05; 6.37) 3.49 (3.27; 3.75) 0.96 (0.45; 1.72)
80m/2.01ha 0.23 (-2.14; 2.59) -2.50 (-5.60; 1.64) 3.49 (3.22;3.94) 0.95(0.42; 1.78)
60m/1.13 ha 2.01(-1.77; 3.16) —4.08 (—6.35; 0.26) 3.49 (3.09; 6.97) 0.96 (0.37; 1.86)
40 m/0.50 ha 3.89(-1.41;3.95) -6.07 (-7.11; -0.06) 3.60 (2.70; 7.48) 0.96 (0.34; 2.59)
Log SD =4,
effective detection
radius c 77 m
200 m/12.57 ha -2.08 (-2.61; 0.78) 1.46 (-3.23; 7.73) 4.01 (3.87;4.13) 0.95 (0.65; 1.36)
180 m/10.18 ha -1.91 (-2.56; 1.00) 0.62 (—3.46; 7.67) 4.00 (3.87;4.14)  0.96 (0.65; 1.37)
160 m/8.04 ha —1.68 (—2.45; 1.23) 0.07 (-3.74; 7.21) 4.00 (3.87;4.16) 0.96 (0.63; 1.35)
140 m/6.16 ha —1.46 (-2.30; 1.50) —0.40 (—4.00; 6.08) 4.00 (3.85; 4.20) 0.96 (0.62; 1.41)
120 m/ 4.52 ha -1.11 (-2.09; 1.80) —-0.90 (—4.35; 1.56) 4.01 (3.81;4.26) 0.95(0.60; 1.41)
100 m/3.14 ha —0.71 (-1.85; 2.17) —1.46(—4.79; 0.45) 4.00 (3.75; 4.47) 0.96 (0.58; 1.46)
80 m/2.01ha -0.14 (-1.51;2.62) -2.16 (-5.34;-0.12) 3.99 (3.65; 6.08) 0.96 (0.51; 1.56)
60m/1.13 ha 0.73 (-1.33; 3.18) -3.08 (-5.95;-0.58) 4.03 (3.37;7.85) 0.96 (0.52; 1.81)
40 m/0.50 ha 3.90 (-1. 18 3.96) -5.81(-6.93;-0.50) 4.21(2.81;7.70) 1.01(0.45;2.59)
Log SD = 4.275,
effective detection
radius ¢ 100 m
200 m/12.57 ha -2.09 (-2.52; -0.07) 1.35(-2.31;7.82) 4.28 (4.16; 4.40) 0.95(0.71; 1.24)
180 m/10.18 ha -1.91 (-2.43; 0.19) 0.58 (—2.61; 7.47) 4.28 (4.15;4.41) 0.95(0.70; 1.27)
160 m/8.04 ha -1.67 (-2.27;1.04) 0.01 (=3.29; 3.53) 4.28 (4.13; 4.45) 0.95 (0.68; 1.30)
140 m/6.16 ha -1.40 (-2.07; 1.45) —-0.49 (-3.73; 1.37) 4.27 (4.10; 4.52) 0.95 (0.65; 1.32)
120 m/ 4.52 ha -1.09 (-1.84;1.79) —-0.94 (—4.22;0.61) 4.27 (4.03; 4.68) 0.95(0.63; 1.37)
100 m/3.14 ha -0.68 (-1.63; 2.18) -1.45(—4.71; 0.03) 4.26 (3.95; 5.35) 0.96 (0.58; 1.43)
80 m/2.01ha -0.22 (-1.38;2.63) -1.99 (-5.27;-0.30) 4.27 (3.79; 7.94) 0.96 (0.57; 1.55)
60m/1.13 ha 0.42 (-1.18; 3.19) -2.72 (-5.84;-0.55) 4.29(3.49;7.93) 0.98 (0.57;1.77)
40 m/0.50 ha 3.90 (-1.18; 3.97) -5.78 (-6.87;-0.58) 4.32(2.90; 7.66) 1.06 (0.50; 2.48)
Log SD =4.5,
effective detection
radius ¢ 120 m
200 m/12.57 ha —-2.11 (-2.48; -1.28) 1.34 (-0.64; 7.54) 4.45 (4.33;4.57) 0.96 (0.71; 1.23)
180 m/10.18 ha -1.90 (-2.35; —=1.03) 0.57 (-1.15; 6.40) 4.44 (4.31;4.62) 0.96 (0.71; 1.24)
160 m/8.04 ha -1.65 (-2.17; -0.59) —-0.01 (—1.69; 1.98) 4.44 (4.28;4.66) 0.95(0.70; 1.27)
140 m/6.16 ha -1.38 (-1.95; 0.02) -0.49 (-2.45; 0.90) 4.45 (4.24;4.78) 0.95 (0.67; 1.30)
120 m/4.52 ha -1.09 (-1.73;1.27) -0.94 (-3.61; 0.27) 4.44 (4.18;5.16) 0.95(0.63; 1.37)
100 m/3.14 ha -0.72 (-1.55; 2.15) -1.48 (—4.56;-0.15) 4.44 (4.04;7.99) 0.95(0.60; 1.43)
80 m/2.01ha -0.23 (-1.32; 2.62) -1.97 (-5.19;-0.45) 4.43(3.85;8.16) 0.96 (0.61; 1.55)
60m/1.13 ha 0.42 (-1.15; 3.19) -2.68 (-5.76; -0.69) 4.40 (3.49;8.10) 0.99 (0.60; 1.82)
40 m/0.50 ha 3.90 (-1.00; 3.97) -5.78 (-6.87;-0.53) 5.21(2.90; 7.72) 1.01 (0.50; 2.34)
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Table 1, continued

Log SD =4.75,
effective detection
radius ¢ 144 m
200 m/12.57 ha
180 m/10.18 ha
160 m/8.04 ha
140 m/6.16 ha
120 m/4.52 ha

~2.13 (=2.41; -1.73)
~1.91 (~2.26; —1.45)
~1.68 (~2.06; —1.05)

~1.08 (-1.65; 0.60)

100 m/3.14 ha -0.71 (-1.42; 2.13) .

80 m/2.01 ha -0.27 (-1.23; 2.62) -1.92 (-
60m/1.13 ha 0.42 (-1.07; 3.19) -2.62
40 m/0.50 ha 3.90 (—1.09; 3.97)

Log SD =5,

effective detection
radius ¢ 160 m
200 m/12.57 ha
180 m/10.18 ha
160 m/8.04 ha
140 m/6.16 ha
120 m/4.52 ha
100 m/3.14 ha

~2.12 (-2.33; —1.87)
~1.91 (=2.17; —1.58)
~1.68 (-1.98; —1.22)

~0.70 (-1.43; 2.04)

80m/2.01 ha -0.27 (-1.21; 2.62) -1.89
60m/1.13 ha 0.38 (-1.15; 3.20) —-2.60
40m/0.50 ha 3.90 (-1.11;3.97) -5.70

1.36 (0.02; 7.58)
0.59 (-0.52; 2.71)

0.02 (~1.08; 1.36)

~1.41 (-1.86; -0.61) —0.46 (—1.73;0.67)  4.75 (4.46; 5.49

)

)
)
-5.74;-0.74)  4.69 (3.56; 8.10
-5.65 (-6.77; -0.72)

1.33 (0.36; 4.78)
0.59
0.04
~1.40 (-1.79; —0.70) —0.46
~1.08 (-1.58; —0.05) —0.93

-1.41 (-4.39; -0.34

4.75 (4.61; 4.93
4.75 (4.58; 5.00
4.74 (4.54; 517

0.95 (0.76; 1.18)
0.96 (0.74; 1.21)
0.95 (0.71; 1.24)
0.95 (0.69; 1.26)
0.95 (0.68; 1.31)
4.77 (4.20; 8.67) 0.95 (0.69; 1.39)
0.97 (0.69; 1.51)
1.01 (0.67; 1.72)
1.07 (0.56; 2.38)

( )
( )
( )
( )
4.76 (4.34; 7.96)
( )
4.74 (3.96; 8.42)

( )

( )

5.25(2.90; 7.70

5.01(4.83;5.31) 0.95 (0.76; 1.17)
0.21;1.72)  5.01 (4.76;5.50) 0.95 (0.75; 1.19)
0.82;0.91)  5.01(4.70;5.88) 0.95 (0.73; 1.21)
1.49;0.35)  5.00 (4.63;7.94) 0.95(0.72; 1.24)
2.28;-0.03) 5.03 (4.45;8.52) 0.95 (0.72; 1.32)

) 5.03(4.30;8.94) 0.97 (0.72; 1.37)

-5.08;-0.60) 4.96 (4.01;8.50) 0.98 (0.71; 1.56)

-5.75;-0.66) 4.90 (3.59; 8.13)  1.02 (0.65; 1.79)

-6.72;-0.68) 5.16 (2.90; 7.70)  1.12 (0.56; 2.43)

models appeared to produce progressively higher
density estimates across the whole range of in-
creasing radii lengths (Fig. 7B), being apparently
in agreement with HDS density estimates only for
large site areas (a radius of 160 m or more). This
becomes evident with estimates plotted together:
density under HDS with a halfnormal detection
function does not increase for a wider range of ra-
dii lengths and is also nearly two times lower than
binmix for the smallest tested radius (site area)
(Fig. 7C).

4. Discussion

Two main conclusions emerge from our analyses.
Simulation results showed that the number and
width of distance classes has no effect on the den-
sity estimates in HDS models and the same was
observed in the analysis of actual data. It may seem
surprising, but very little precision is lost with in-
creasing distance class widths (see Kéry & Royle
2016, pages 415-416). With respect to site area
(radius length), in simulation, HDS density esti-
mates seem to be robust except for decreased pre-

cision as the site area declines and small over-
estimations when the site area is very small. Den-
sity estimates also seem to be affected by song
loudness (and thus detectability as a function of
distance — the louder the song, the larger the effec-
tive detection distance): simulated species with a
loud song produce more precise results than the
species singing quietly.

In the case of our actual data on Red-breasted
Flycatchers, more-than-expected detections at
close distances during survey 1 could be responsi-
ble for higher density estimates in the smaller site
areas under HDS models. It is unclear why there
were so many detections close to the observers, but
birds could respond positively to the observer’s
presence and approach him to be detected closer
than their initial locations. We note that these de-
tections occurred in the closest 20 m-wide distance
class (Fig. 5A and 5C), so these birds couldn’t be
miss-assigned at larger distances which are more
prone to error — i.e., between 0-50 and 51-100 m
distance classes. The degree of overestimation of
density in Red-breasted Flycatcher data increased
with radius decline, i.e., the smaller the radius, the
higher overestimation, but this was only clear for
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Fig. 3. Simulation results: density estimated by binmix models fitted to point count data for hypothetical
species ranging from quiet (A) to very loud (F) song (see Methods) across increasing radii lengths (site
areas). Remaining denotations as on Fig. 2.



Neubauer & Sikora: Abundance estimation from point counts with a low number of surveys 141

A
©
< -
god T
© - = ol -
é - -: o o - . - -
2 °7 E = 2 - = - - -
i F £ £ 3 z = - -
S ¢2. 8 §.%5 3 3z - ¢
S o T ITITHHHE
D B Ll B
5 TTENETR
5 ;
T T T T T T T T T
40 80 120 160 200
Radius length (m)
C
© -
:g?ﬂ'— o
~ -
B o~ ) 2 .
L -
E
>
‘@
c
9]
©
()}
(]
-
<lr,
T T T T T T T T T
40 80 120 160 200
Radius length (m)
E
© 4
Twd -
g - s : Y
® s E
E = i :
@ £ B . i
c ;3 3
3 <\,1—. g se I...lll.
{@2] ’ 4
g .
—
ﬁl',

T T
40 80 120 160
Radius length (m)

T
200

Log density (males / 1 ha)

Log density (males / 1 ha)

Log density (males / 1 ha)

B

SSSRUNBONN 88 56

L UTHTH

CRANEINGN G S
A
Sr———
y s %

T T
40 80 120 160
Radius length (m)

T
200

ORI 01

|
L THER

T T
40 80 120 160
Radius length (m)

T
200

F
-

T T T T

T T
40 80 120 160
Radius length (m)

T
200

Fig. 4. Simulation results: density estimates per 1 ha on the log scale under HDS (dark grey) and binmix
(paler grey) models for hypothetical species ranging from quiet (A) to very loud (F) song (see Methods)
across increasing radii lengths (site areas). Each symbol represents an estimate from a single simulation

run.



142

A Survey 1
N —

10

Number of males

| -

10 30 50 70 90 110 130 150 170 190
Distance (m)

C Survey 1

0.4

0.3

Density (number of males / 1 ha)
0.1

1 P

10 30 50 70 90 110 130 150 170 190
Distance (m)

0.0

ORNIS FENNICA Vol. 97, 2020

B Survey 2

< _ — —
il

Number of males

N ’_‘

o

10 30 50 70 90 110 130 150 170 190
Distance (m)

D Survey 2

0.04 0.06 0.08
| | |

Density (number of males / 1 ha)

0.02
|

.

10 30 50 70 90 110 130 150 170 190
Distance (m)

0.00

Fig. 5. Numbers (A and B) and density / 1 ha (C and D) of Red-breasted Flycatcher males pooled into ten
20 m wide distance zones during surveys 1 (A and C, 9-12 May) and 2 (B and D, 18-23 May) at (the
same) 178 sites, Darzlubie Forest, N Poland, May 2016. Labels on X axes are centres of the 20 m wide
distance classes at progressively bigger distances from the observer.

radii smaller than the effective detection distance
(c 118 m in our case) and could result from more-
than-expected number of birds close to the ob-
server (the smaller site, the stronger effect). There-
fore, with the data arising from point counts, the
violations of model assumptions can affect density
estimates, and this can be particularly important
when very small sites (i.e., with short radii) are
surveyed. Density estimates seem robust to such

deviations, as long as the radius length is large
(probably larger than the effective detection ra-
dius). It would be instructive to perform a simula-
tion study exploring how more-than-expected de-
tections close to the observer affect density esti-
mates.

In our study, the effective detection radius is
rather large (Table 3), because Red-breasted Fly-
catchers sing loudly and because beech forests (a
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Fig. 6. Observer’s assignment of singing males detections into dis-
tance classes (boxes) and actual detection distances (symbols). Cir-
cles — Survey 1, triangles — Survey 2. Each symbol represents a
single detection. Means for each distance class and the two surveys
shown with larger, empty symbols, boxes show the “correct”, prede-
fined four distance classes. Symbols are jittered slightly along the X

axis to reduce overlap.

suitable habitat, where most males were found in
the Darzlubie Forest) has rather sparse under-
growth, which could increase distances at which a
singing bird can still be detected. The songs of
most European forest birds are sufficiently loud
for this distance to be somewhere around 100 m,
but there are also species that sing quietly (e.g.,
Goldcrest Regulus regulus and Firecrest R. igni-
capilla or Siskin Spinus spinus) and cannot be
heard further than some 60—70 m (personal obser-
vations). Such information is scarce in the litera-
ture, thus one cannot assume it a priori, but data al-
lowing for estimation of effective detection radius
with distance sampling methodology can be col-
lected within a small-scale pilot study. A safe, gen-
eral solution would be to make site areas — circular
areas surveyed — sufficiently large (for example, a
standard of 100, 150 or 200 m radius would work
fine for most species) since effective area is likely

to be (much) smaller than the site area. In general,
however, simulation studies showed that the ra-
dius length and site area had little effect on density
estimates in HDS except for slightly lower preci-
sion for small site areas.

Not surprisingly, binmix models produced
higher abundance estimates than HDS models and
the degree of overestimation was particularly high
for small site areas. When this model is adopted to
point count data collected in continuous habitats
(like forests) and when the site area is small, the
main issue is that one does not know the effective
area to which estimates of abundance refer, since
territories of recorded individuals cover greater
areas than the one assumed within a predefined ra-
dius (Kéry & Royle 2016). Therefore, despite esti-
mates still being “per site” numbers, the area effec-
tively surveyed is unknown and larger than the site
area, so density calculated using site area is too
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Table 2. HDS models fitted to Red-breasted Flycatcher data collected at a point transect in Darzlubie Forest, N Poland,
2016. AIC values are given and the top-supported model is given in bold. AIC ® is Akaike model weight. Model parame-
ters: A — abundance, ¢ — availability, p — detection. Effects: habitat — abundance habitat-dependent (optimal vs poor),
survey — availability survey-dependent (survey 1 vs survey 2), a dot denotes a parameter unaffected by any covariate.
Detection functions: hn — halfnormal, hz — hazard, exp — exponential, unif — uniform.

Model Effects; Number of zones

detection 2 4 5 8 10 20

function

Zone width
100 m 50m 40 m 25m 20 m 10 m

1 {2 e @ P- 3 0N 682.745 862.744 936.696 1084.022 1153.188 1364.458
2 M paoiar @ P- 3 0z 683.611 862.304 940.004 1085.401 1155.723 1366.800
3 M paiar @ P- 1 €XP 688.444 876.215 947.080 1095.075 1162.962 1374.066
4 © i @+ P 35 unif 730.840 940.215 1012.370 1163.308 1234.758 1447.231
5 M oo @ aurvey P- }; hn 684.256 864.281 938.207 1085.827 1155.001 1366.275
6 M oot @ survey P- }; hz 684.351 862.977 940.646 1086.552 1156.922 1367.876
7 navitat” D survey’ P 1}, exp 690.183 877.859 948.725 1096.914 1164.817 1375.918
8 navita’ P curvey’ P- }; unif 731.568 941.318 1012.998 1164.315 1235.765 1448.238
Top model AIC » 0.390 0.346 0.556 0.457 0.543 0.528

Table 3. Parameter estimates of the top-supported HDS models for variable number of distance classes and their widths.
Means and (bootstrapped) 95% confidence intervals are given. “hn” and “hz” stand for the detection function (halfnormal
and hazard, respectively), A — abundance (estimates given for the two habitats, log scale), ¢ — availability probability
(logit scale), p — SD of the detection function (log scale), effective detection radius — effective detection radius distance
(in m). Density estimates given per 10 ha. For the simulation with four 50 m wide zones the log of the scale (dispersion)
parameter of the hazard detection function has a mean of 1.62 (95% ClI: 1.11; 2.07).

Number Top model Parameter estimates Effective Density
of zones detection
/ zone Abundance, 1 Availability, Detection, radius
width o) p
Habitat: Habitat: Habitat: Habitat:
optimal poor optimal poor
2/100m {x .. .o.p-}hn -2.16 -5.21 7.29 4.49 119.3 1.15 0.09
(-2.39; -1.92) (-12.40; -3.83) (1.53;9.64) (4.35;4.61) (106.0; 130.8) (0.89; 1.47) (0.00;0.21)
4/50m  {i . .9.p.-}hz -2.26 -5.50 4.19 4.75 117.6 0.92 0.08
(-2.55; -1.92) (-13.07;-3.88) (0.46;9.61) (4.56;4.90) (106.9; 126.4) (0.67;1.22) (0.00; 0.19)
5/40m  {x _,..0.P-}khn -2.12 -5.24 7.06 4.46 118.0 1.19 0.10
(—2.34; -1.87) (-12.81; -3.69) (1.56; 9.36) (4.34;4.57) (106.8; 128.8) (0.96; 1.47) (0.00; 0.25)
8/25m  {A, 0@ P- 1 hn -2.16 -4.77 7.48 4.47 119.2 1.14 0.10
(—2.46;-1.94) (-5.88;-3.72) (2.30;9.62) (4.37;4.56) (109.3; 127.1) (0.85; 1.42) (0.01; 0.24)
10/20m {i, .o ®,p-}hn -2.10 -5.15 7.75 4.45 116.7 1.23 0.10
(—2.30; -1.88) (-11.99;-3.75) (4.07;9.50) (4.35;4.56) (107.9;127.3) (1.00; 1.51) (0.00; 0.24)
20/10m {A, o ®sP-3hn -2.15 -5.18 7.48 4.47 119.0 1.16 0.09
(-2.40; -1.96) (-12.91;-3.71) (1.72;9.62) (4.38;4.56) (110.0; 127.7) (0.91; 1.40) (0.00; 0.24)

high. Enlarging the size of a site, by using a bigger
radius, does not help either, since some individuals
at larger distances are missed if the observer is sta-
tionary at a site because detection declines with
distance, which in turn can lead to underestima-

tion. The apparent agreement of estimates with the
simulated density value could be produced this
way.

Two independent problems, which bias results
in opposite directions, cancel each other out: to-
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wards overestimation that occurs when sites are
small and underestimation which occurs far away
from the observer when sites are large. How
strongly this is visible on small versus large size
sites depends on song loudness. In consequence,
the apparent agreement occurs when sites sur-
veyed are of some given size relative to song loud-
ness (and therefore species-specific), leading to a
more or less “correct” density, while in fact this
stems from the two counterbalancing effects, each
biasing estimates. There is a suggestion of this ef-
fect in our simulation study in the case of quiet
singers: density seems to be underestimated at the
largest sites (radius of 200 m, Fig. 4A), overesti-
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Fig. 7. Red-breasted Flycatcher density estimates
in relation to site area under HDS and binmix mod-
els: A — HDS with the halfnormal detection function,
B — binmix (note different scales on A and B). Den-
sity estimates were obtained with the
nonparametric bootstrap method (see Methods for
more details). Horizontal lines inside the boxes de-
note median, boxes represent the 25%-75% per-
centiles, whiskers stand for + 1.5 interquartile
range, circles — outlying values. Black — “optimal”
habitat, pale grey — “poor habitat’. C shows a sum-
mary of density estimates for “optimal” habitat
(black and grey boxes on A and B; “poor” habitat
not illustrated) on a common scale: black — HDS
with halfnormal detection function, grey — binmix
model. Only medians from A and B are shown on C
for clarity, trend visualised with the loess function.

mated at small sites and apparently correct esti-
mates occur at sites of intermediate size. No such
effect is present for loud singers at the largest sites
(Fig. 4F), perhaps because little underestimation
occurs due to loud songs and high detectability far
from the observer. In line with this, the density of
species singing moderately loudly at the largest
sites is apparently approximately correct (Fig. 4C
and 4D). Clearly, more simulation-based studies
are needed here.

Overestimation due to temporary emigration
(geographical openness) at small sites can be
solved with an associated availability parameter,
but this requires data collected under the robust de-
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sign protocol (Chandler et al. 2011). Overestima-
tion is not so much an issue when study plots are
larger areas and hold more territories (BStsch et al.
2020) or when sampled sites are isolated habitat
patches or islands so that the local population oc-
cupies an object (Costa et al. 2019) or a restricted
area which is exactly the plot size (e.g., like in
shorebirds, Lyons et al. 2012). Some other solu-
tions to the “area issue” have been proposed (Kéry
& Royle 2016: pages 279-282).

While originally applied to bird point count
data (Royle 2004), certain limitations of binmix
models became evident relatively recently (Joseph
et al. 2009). These models have been shown to be
sensitive to violations of their assumptions (see
Kéry & Royle 2016, pages 248-250, including
Table 6.2 for a discussion on this issue). Link ez al.
(2018) point out that multiple counting of the same
individuals (so-called false positives), openness of
the population over the study course, or un-
modelled heterogeneity in detection probability,
bias the abundance estimates heavily. Along with
this, our study shows that care is needed when
binmix is to be adopted for estimating density from
point count data, as is frequently done.

Exact (to within a few meters) detection dis-
tances obtained directly in the field allowed us to
perform this study, but it is not necessary to pos-
sess exact values in order to succeed with distance
sampling models — usually observers assign detec-
tions into distance classes, which is far easier to
apply in the field. Exact detection distances are
hard to obtain (but easy to simulate), although
rangefinders can be used in open and semiopen
habitats. Dense, forest habitats actually exclude
the possibility of using rangefinders for bird detec-
tions since most detections are vocalisation-based.
Also, correct assignment of detections into dis-
tance classes requires some experience.

In addition, it can vary with song species-spe-
cific characteristics as well as with topography,
weather and other variables, so that a pilot, training
study could improve assignments greatly. In our
study, the observer’s assignment into distance
classes was moderately correct, showing that even
with experience (both observers performing sur-
veys have 30+ years of experience with forest
birds), some assignment errors do occur. We be-
lieve that with experience and training, assignment
errors should occur relatively rarely and be small

ORNIS FENNICA Vol. 97, 2020

enough to have little effect on parameter estimates.
Density estimates will always benefit from collect-
ing detection distances, even at few — two, in the
extreme case — wide distance classes.

In summary, if density is of interest, and the
temporal replication within the study is limited (as
in our case), assigning detected birds into wide dis-
tance classes represents the recommended option
in dense, forest habitats. If no distance data are col-
lected, other approaches are possible, notably the
robust design approach, but they require more in-
tensive temporal replication to make the availabili-
ty parameter estimable. Binmix models in their
simplest version, despite the simplicity of the data
to be collected, have to be applied to the results of
point count surveys with care, primarily because
detections are distance-dependent and the sur-
veyed area remains unknown. Despite the high
sensitivity of these models to violations of as-
sumptions, these models can still be highly reliable
and useful tools in estimating abundance in other
situations.
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Pistelaskennan populaatioestimaatit
kun seurannassa olevan alueen pinta-ala
on laaja mutta toistoja vihin:

mallien vertailu

Tutkimme kahden populaatiotiheyksid mallinta-
van menetelmén — HDS ja binmix — eroja populaa-
tiokokojen/tiheyksien arvioimiseen. Testasimme
tiheysestimaattien tarkkuutta kayttdmalld simuloi-
tua aineistoa, ja todellisessa pikkusiepon pistelas-
kenta-aineistossa Puolasta. Sekd simuloinneissa
ettd empiirisessi aineistoissa mallinnettiin vaihte-
levia pinta-aloja ja vaihtelevaa laulun voimak-
kuutta.

Havaitsimme etté lintujen etdisyyteen lasken-
tapisteestd kéytetyilld luokilla tai ndiden koolla ei
ollut vaikutusta tiheysestimaatteihin tai niiden
tarkkuuteen HDS-menetelmaissé, edes tilanteessa,
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jossa etdisyys laskentapisteestd oli luokiteltu vain
kahteen luokkaan (ldhelld vs kaukana). My®0s tut-
kittavan alueen koko (halkaisijan pituus) ja laulun
voimakkuus vaikutti HDS-menetelmén tiheysesti-
maatteihin vain véhén: tiheys yliarvoitiin 5-17 %
kun alueen koko oli pienempi ja lajeilla, joiden
laulu on hiljaisempi. Yleisesti ottaen HDS-mene-
telmdn antamat estimaatit olivat tarkkoja. Sen si-
jaan binmix-mallinnus yliarvioi tiheyden pienilla
alueilla, mutta estimaatit olivat tarkkoja isommille
alueille. Tarkat estimaatit isoilla alueilla voi johtua
siitéd, ettd malli yliarvioi tiheydet kun havaittavat
linnut ovat ldhelld laskijaa, ja aliarvioi tiheydet,
kun havaittavat linnut ovat kaukana laskijasta, jol-
loin keskiméaardisesti arviot ovat tarkkoja.

Kun binmix-malleja sovelletaan pistelaskenta-
aineistoon, tdytyy titen huomioida kunkin lajin
laulun voimakkuus suhteessa alueen pinta-alaan,
koska ndmaé nayttavit vaikuttavan tiheysestimaat-
teihin. Tédten suosittelemme, ettd kun tiheysesti-
maatteja arvioidaan pistelaskennalla, ja saatavilla
on vain védhén toistoja, keréttiisiin aineistoa myos
havaittavien lajien etdisyydestd (edes karkealla re-
soluutiolla), jolloin voidaan hyddyntdd HDS-mal-
leja. Tdssd menetelméssé hyoty suhteessa kustan-
nuksiin on suuri, ja titen se tarjoaa hyvén vaih-
toehdon yksinkertaisiin pistelaskentoihin joissa
vain lintujen lukumééra tilastoidaan.
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