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The use of Unmanned Aerial Vehicles (UAVs) to monitor large colonies of seabirds 
avoids challenges associated with conventional methods, but manual image processing is 
expensive. Development of semi-automated analytical methods rely on high image spatial 
resolution, which requires a trade-off between securing low area coverage and high spatial 
resolution flying at low altitude vs high area coverage but low spatial resolution flying at 
higher altitudes. Increasing individual bird detection probabilities requires maximizing 
contrast between target and background, which can be enhanced using thermal sensors. 
We applied a semi-automatic analytical method to multispectral UAV derived imagery 
to count a mixed breeding colony of Herring Gulls (Larus argentatus) and Lesser Black-
backed Gulls (L. fuscus). We trained the computer to detect different image classes by their 
spectral signature in several orthomosaics obtained from UAV flights at different altitudes 
using different cameras. Highest agreement with the manual counts was achieved by low 
flying (20 m) using the highest camera resolution (97.7 ± 1.1% for the Herring Gulls, 
omission error 2.6%, commission error 0.5%; 94.8 ± 1.8% for Lesser Black-backed Gulls, 
omission error 6.5%, commission error 1.6%). Method precision varied between trials, 
confirming the importance of low altitude flying with high quality cameras, and a 40% 
reduction in detection noise from adding a thermal sensor.

Counting breeding gulls with unmanned aerial vehicles: 
camera quality and flying height affects precision of  
a semi-automatic counting method

Alejandro Corregidor-Castro*, Thomas E. Holm & Thomas Bregnballe

1. Introduction

Monitoring annual abundance of breeding seabirds 
is fundamental for conservation and long-term 
studies, as well as tracking ecosystem health by 
observing population trends (Descamps et al. 
2011, Chabot & Francis 2016, Lyons et al. 2019a). 

Conventional monitoring of breeding seabirds  
uses methods such as line transects or point counts. 
However, the efficacy of such methods relies on 
observer skills, uncertainties of extrapolations and 
difficulties regarding the access to view breeding 
colonies (Brisson-Curadeau et al. 2017, Afán et 
al. 2018, Magness et al. 2019). High disturbance 
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levels to breeding birds (Grenzdörffer 2013) may 
adversely affect individual breeding success or 
even cause colony failure (Sardà-Palomera et 
al. 2017, Fuller et al. 2018). To avoid such bias 
and impacts, methods to assess abundance and 
distribution must generate highly accurate data 
without affecting individual bird behaviour 
(Sardà-Palomera et al. 2017). 

Unmanned aerial vehicles (UAVs), popularly 
known as drones, potentially reduce such bias 
and impacts. Drone surveys can cover large 
areas during short duration flights (depending 
on altitude, e.g., covering a 12.2 ha waterbird 
colony in 30 minutes; Afán et al. 2018, Valle 
& Scarton 2019) providing high-resolution 
spatio-temporal data from multispectral sensors 
(López & Mulero-Pázmány 2019) in inaccessible 
or dangerous areas (Brisson-Curadeau et al. 2017, 
Inman et al. 2019, Valle & Scarton 2019). Drones 
have now been extensively used to monitor birds 
(Fretwell et al. 2012, Grenzdörffer 2013, Chabot 
et al. 2015, Rush et al. 2018, Pfeifer et al. 2019). 
Their use minimizes or eliminates disturbance 
to birds (Chabot & Francis 2016, Afán et al. 
2018), producing highly accurate information 
about numbers of nesting birds and other 
breeding parameters (Sardà-Palomera et al. 2011, 
Weissensteiner et al. 2015, Sardà-Palomera et al. 
2017).

Application of drone technology, however, 
requires substantial post-survey data processing 
time (Descamps et al. 2011, Inman et al. 2019). 
Traditionally, this has been conducted manually; 
counting birds and/or nests on images, which is 
highly time-consuming, and in some cases may 
negate efficiency gains from data collection 
(Chabot & Francis 2016, Lyons et al. 2019b). 
Widespread adoption of such new technologies is 
dependent on their exceeding both the efficiency 
and accuracy of traditional methods (Hodgson et 
al. 2018). Towards this aim, different automated 
and semi-automated approaches to image analysis 
have been developed (Hollings et al. 2018, Rush 
et al. 2018), which have reduced processing times 
up to eight-fold (Lyons et al. 2019b).

Typically, these (semi-)automated methods 
use point process algorithms, spectral threshold-
ing, and combinations of spectral properties and 
predictive modelling (see Lyons et al. 2019b), to 
differentiate the targets (i.e., breeding birds) from 

the remaining elements of the image. One of the 
main drivers for automatic detection in aerial 
imagery is the spatial resolution of the image. To 
achieve the most efficient species identification 
in object-oriented approaches, it is recommend-
ed to work at an image resolution of 0.5–1 cm/
px (Grenzdörfer 2013, Dulava et al. 2015, Afán 
et al. 2018, Barr et al. 2018, Rush et al. 2018). 
However, this level of resolution requires the 
surveyor to trade-off flying at lower altitude to 
increase image spatial resolution against flying 
higher and covering larger areas (Inman et al. 
2019). The option of flying at low altitude and 
thereby getting images of high spatial resolution 
may become constrained by battery life (espe-
cially if there is limited access to spare batteries 
or to charge batteries in the field) and the lower 
threshold of flying height below which the target 
species (or other species) change behaviour or 
even leave the nest due to the possible disturbance 
produced by the UAV.

To use the spectral properties, the imagery 
needs to generate consistently high contrast  
between target objects and their background, 
i.e., the spectral signature of the target needs to 
be constant (i.e., in shape and colour, Hollings et 
al. 2018, Lyons et al. 2019b) and stand out from 
the rest of the image (Chabot & Francis 2016). 
A common challenge is to differentiate elements 
with similar spectral signatures in the image, for 
instance mistaking pale rocks for bright birds 
(Chabot & Francis 2016; Lee et al. 2019). In such 
situations, thermal sensors offer the potential to 
increase individual detection probability (since 
endotherms tend to be warmer objects than their 
surroundings, i.e., polar bears and sea ice, Burke 
et al. 2019, Chabot et al. 2019). Despite falling 
costs, this technology remains expensive (Kays 
et al. 2019), and there are still hardware and 
software challenges due to the novelty of the 
technology (Scholten et al. 2019). Low resolution 
of thermal sensors compared to RGB cameras 
(Kays et al. 2019) and difficulties recognizing 
species using thermal images alone also restricts 
their application (Goodenough et al. 2018). Use 
of thermal sensors thus needs a complementary 
RGB sensor (Kays et al. 2019), especially when 
applied where several species breed in sympatry 
(Chabot & Francis 2016, Afán et al. 2018).

In this study, we conducted a drone-based 
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survey and applied semi-automated methods 
to imagery to count a mixed breeding colony of 
Herring Gulls (Larus argentatus) and Lesser 
Black-backed Gulls (L. fuscus) located on an un-
inhabited island in the Danish part of the Wadden 
Sea. Using ArcMap 10.5, we trained the computer 
to detect different elements based on their spectral 
signature in several orthomosaics obtained from 
a series of UAV flights at different altitudes. We 
tested the effect of camera quality on the efficacy 
of applying the semi-automatic counting of gulls 
and whether adding a thermal infrared (TIR) 
band to the method improved the differentiation 
of the target elements from similar objects in the 
surroundings.

2. Material and methods

2.1 Study site

We collected the UAV imagery in May 2018 and 
2019 on Langli (55° 30’ N, 8° 18’ E) located in Ho 
Bugt close to the city of Esbjerg, Denmark (Fig. 1), 
a 80 ha island, c. 2 km long and 0.5 km wide at 
its widest. Langli is a part of an internationally 
important area for waterbirds protected under the 
Ramsar Convention and the EU Birds Directive. 
The island is uninhabited, open to public access 
only between 16 July and 15 September. Langli is 
flat with marshy areas at the northern and southern 
ends, but mostly covered in dunes rising to 14–16 

m high in the center of the island. Dry marsh 
areas have a high coverage of Common Velvet 
Grass (Holcus lanatus) and Red Fescue (Festuca  
rubra) with Common Saltmarsh Grass 
(Puccinellia maritima) and Sea Lavender 
(Limonium vulgare) dominating wetter areas. 
Herring Gull (HG) has bred on the island since 
before 1900, whereas the Lesser Black-backed 
Gull (LBBG) population has only established 
since the late 1970’s (Møller 1978). Both HG 
and LBBG are common in Denmark and most 
of Europe. The Danish populations of HG and 
LBBG are estimated to number c. 90,000 and c. 
5,000 pairs, respectively (Bregnballe & Lyngs 
2014, T. Bregnballe, unpubl. data), often breeding 
in mixed colonies (Calladine 1997) as is the case 
on Langli. 

2.2 Drone survey and protocol

We conducted several flights with three different 
drones to test the semi-automatic counting method. 
On 30 May 2018, we used a fixed wing UAV 
(Event 38 model E384) with a Sony ILCE-QX1 
camera flying for 2.5 hours to cover the entire 
island at 50 m altitude (1 battery change). In 2019, 
we flew two types of quadcopters, a DJI Matrice 
210 and a DJI Phantom 4 Pro. The DJI Matrice 
210 was flown with two different cameras, a DJI 
Zenmuse X5S with a DJI MFT 15 mm F/1.7 
ASPH lens, and a DJI Zenmuse XT2 TIR camera 

Fig. 1. The location of the island of Langli 
(55°30’ N, 8°18’ E) in the northern part of 
the Wadden Sea, and the location of the 
transects used for the testing the 2019 
methods (seven transects in total). 
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19 mm lens including a 4k visual camera (dual  
sensor). The DJI Phantom 4 Pro had a camera 
with a standard 8.8 mm / 24 mm (35 mm format 
equivalent) F / 2.8–F / 11 lens, thus achieving a 
lower image quality than the one equipped in the 
DJI Matrice 210.

We first conducted a survey with the DJI 
Matrice 210 Zenmuse X5S at 20 m altitude on 
14 May 2019 from 17:33 to 18:47 (74 min, 2935 
images, 2 battery changes). On 15 May 2019 
from 07:14 to 09:52, we flew the DJI Phantom 
4 Pro at 15 m (158 min, 3967 images, 5 battery 
changes). We flew the DJI Matrice 210 with 
the XT2 camera, i.e., with both RGB and TIR 
cameras, at 50 m altitude on 15 May 2019 from 
04:56 to 06:42 (106 min, 1901 dual images, 4 
battery changes), to test how the addition of the 
TIR sensor affects the detection of gulls. All the 
information regarding the different flights has 
been summarized in Appendix I. 

The take-off and landing site for each of the 
UAV surveys was located close to the old field 
station on Langli (55° 30’ 43.7” N, 8° 18’ 58.6” E). 
This location allowed us to control the UAVs 
from a position (> 100 m) where we avoided any 
unnecessary disturbance to the colonies (Vas et 
al. 2015), while keeping drones within the visual 
line of sight (VLOS) of the pilot. Flights were 
conducted during the breeding season just before 
hatching, to increase the probability that one of the 
parents would be lying down on a nest with eggs. 
We decided to avoid flying below 15 m because 
earlier studies experienced that the behaviour 
of HG and LBBG appeared unaffected by UAV 
survey flights as long as the UAV was flying at 15 
m height or more (Holm et al. 2018, Rush et al. 
2018, Holm et al. 2019). 

2.3 Flight control and image processing

In 2018, we used the Mission Planner open source 
autopilot (Ardupilot 2019) as ground station 
software to control the flight. Photos were taken 
automatically with an overlap of 65–75% and 
stitched using Drone2Map from ESRI (ESRI 
2019). In 2019, we used DroneDeploy Pro to 
both control the flight and process the imagery  
(dronedeploy.com). With this software, we could 
upload the transect images and stitch them together 

in groups of up to 1,000 pictures. Once images 
were uploaded and processed, the stitched images 
were exported as an orthomosaic TIF-file. As 
expected, the final resolution of the images varied 
according to survey altitude. For the RGB pictures 
at 50 m, the final resolution was 1.20 cm/px, for the 
TIR imagery it was 7.10 cm/px, and for the 20 and 
15 m flights, the final resolution was 0.53 cm/px.

2.4 Supervised classification

In order to test how drone imagery could be 
processed effectively, we attempted the use of a 
semi-automatic method for counting individuals 
and differentiating species, as suggested by 
Rush et al. (2018). To develop this method, we 
conducted a supervised classification. This kind 
of classification is based on the creation of a 
training set, in which a sample of pixels of the 
image are assigned to different classes. These 
classes are then differentiated from each other 
by the unique spectral signature of the pixels that 
are contained in them, thus creating well-defined 
classes of fundamental importance for classifica-
tion accuracy (Foody & Mathur 2006, Richards 
& Jia 2006).

For the first round of classifications, we 
selected six random areas (100 × 60 m) from 
the large orthomosaic obtained from the Langli 
flight of the fixed-wing drone in 2018. In 2019, 
we added an extra spectral band to the analysis 
by flying the DJI Matrice 210 equipped with both 
RGB and TIR cameras over previously ground 
counted transects at 50 m (N = 7; Fig. 1) to 
compare with imagery from RGB cameras at 15 
m (DJI Phantom 4 Pro) and at 20 m (DJI Matrice 
210). These transects were individually delimited 
with four cones (one on each corner of the seven 
transects) that were used as Ground Control 
Points (GCPs) to georeference the imagery. We 
analyzed all of these images following the same 
semi-automatic procedure.

2.4.1 Supervised classification (RGB)

For each of the six selected areas from 2018, we 
established a training set using the training sample 
manager tool in ArcGIS v10.5 (ESRI 2019). We 
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obtained the specific pixels of each gull species 
using polygons and we assigned them to type 
classes each as follows: i) heads, ii) HG shaded 
back, iii) HG bright back, iv) LBBG shaded back, 
v) LBBG bright back. We analyzed the histograms 
and scatterplots per band and class, and retested 
and retrained each class when overlapping of these 
parameters was present, in order to increase the 
accuracy of the method. Following this process, 
we used the maximum likelihood tool to conduct 
the supervised classification of the different 
classes (Fretwell et al. 2012, Grenzdorffer 2013, 
Rush et al. 2018) with a reject fraction of 0.01, 
which was enough to exclude the majority of 
unwanted pixels. The signature set was specific to 
each area as this specificity increased the ability 
to recognize individuals (Rush et al. 2018). We 
converted the classification output into polygons 
in order to operate each of the classes individually, 
choosing the “gull candidates” by selecting the 
polygons classified as “backs” and their proximity 
to the polygons classified as “heads”, as well as to 
each other (“shaded backs” together with “bright 
backs”). By gathering these polygons together, we 
could create “gull-like” polygons of known area 
and perimeter, where the category of the predom-
inant pixels determined the gull species. Polygons 
with unrealistic values were subset after assessing 
a repeatable threshold (Afán et al. 2018). Finally, 
we created a 50 cm buffer around the potential 
candidates, which facilitated a later manual check 
(Rush et al. 2018). We used the model builder 
tool in ArcGIS to reduce the user time spent in the 
process. 

The shapefile derived from this processing 
was considered the automatic counting method 
(AT) output. With this shapefile, we then manually 
identified the different objects to confirm that they 
were birds and correctly assigned to species level. 
We then validated the AT method output by testing 
for accuracy (the proportion of birds detected 
correctly by the processing), commission errors 
(proportion of birds counted automatically but not 
confirmed in the manual process) and omission 
errors (proportion of birds present that were not 
detected automatically) as in Afán et al. (2018). 
After this process, we manually edited the AT 
output shapefile to delete the false positives, from 
which we obtained the semi-automatic output 
(SA). The process to obtain the SA from the AT 

output was fast to complete, and did not require 
expertise on the subject. 

In order to compare the efficiency of both the 
AT and SA method, we first manually counted 
each of the test areas to identify the exact number 
of gulls and the species. Thus, the success and 
accuracy of the classification methods was de-
termined by comparison between these manual 
counts and the AT and SA outputs. It took us ap-
proximately 2 hours to process each orthomosaic, 
and most of the time the method did not require 
human intervention. Whereas larger orthomosaics 
would require more detailed training samples 
due to an increase in variability within the image, 
they could be potentially processed over a similar 
time span, depending on the processing capacity 
of the computer used, highly reducing the human 
effort required for the process when compared to a 
throughout manual count of the same image.

2.4.2 Supervised classification (RGB+TIR)

We tested for accuracy improvement in counting 
and species recognition by conducting an addi-
tional classification of the TIR imagery. We first 
converted the TIR imagery to a 3-band color layer, 
where warmer objects were represented with 
white colors, and colder objects with blue-purple 
colors (Fig. 2). The classification was similar to 
the supervised classification explained above, 
but adding an extra step: after obtaining all “gull-
like” candidates prior to generating the initial AT 
output from the RGB image, we created an extra 
training sample exclusively from the TIR layer. 
In this layer, we ran a supervised classification to 
detect the heat signatures in the thermal imagery. 
We then selected the candidates that were located 
within a given distance of a heat signature, and 
subtracted unrealistic values, in order to reduce the 
identification noise produced by already warmed 
stones or sand banks. Even though the imagery 
matched fairly well, the matching of both images 
was not 100% accurate due to the use of a dual 
sensor (with the spatial and spectral collection 
differences that it involves). Thus, we selected 
candidates that were located in a buffer radius of 
50 cm from a heat signature (less than the normal 
distance between individuals). Because of the 
non-problematic detection of HG by the RGB 
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cameras, we focused the semi-automatic detection 
effort of RGB + TIR on the more conspicuous 
LBBG.

2.5 Methodology, factors affecting the 
classification 

Battery time and thus flying time is often a 
constraint in UAV surveys (Grenzdörffer 2013). 
We therefore tested the effect of flying at higher 
altitudes (and thereby reducing total flying time) 
on the precision of the analyses of the images. To 
do so, we used the orthomosaics obtained from 
the described flights in altitudes of 15, 20 and 50 
m and conducted the AT and SA classifications 
(see above) and compared their agreement for 
both species with the manual counts. 

2.6 Statistical analysis 

We used a linear regression to compare the 
manual counts with the birds counted by the 
different methods on the aerial photos. We 
tested our variables for normality using the 
Shapiro–Wilk test (p > 0.05). We examined not 
normally distributed variables under nonpara-
metric tests, and used nonparametric correlations 
(Spearman’s rank) between AT/SA outputs and 
manual counts when necessary. As the inde-
pendent variable, we used the number of birds 
counted with the method (AT/SA), whereas we 
used the number of birds counted manually as 
the dependent variable. To test for differences in 
the mean agreement with the manual counts of 
the semi-automatic counting method between the 
RGB and the RGB + TIR, we used a paired t-test. 

Fig. 2. Example of the combined imagery for both the RGB camera (left), and the transformed TIR imagery (right), 
where temperature values are interpreted as a 3-band layer (warmer objects are represented in white, colder colors in 
purple-blue). Individual gulls are located inside the black circles for easier interpretation.
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We carried out the statistical analyses using the 
open-source program R v3.5.1 (R Core Team 
2018), using the RStudio integrated development 
environment (IDE, v.0.99.903).

3. Results

3.1 Supervised classification (RGB)

The results of the supervised classification 
differed between the two species of gulls. For 
the HG, the automatic process (AT) provided an 
average agreement of 109 ± 4.8% (98–127%, 
Fig. 3) with a positive relationship between 
manual and automatic counts (F1,4 = 25.14, p < 
0.007, R2 = 0.83). The semi-automatic process 
(SA) provided a mean agreement of 95.7 ± 
0.9% (93–100%, Fig. 3), and a strong positive 
relationship with the SA for counting HG (F1,4 
= 255.8, p < 0.001, R2 = 0.98). For the LBBG, 
the automatic process (AT) provided an average 
agreement of 2208 ± 785.7% (691–5,863%, 
Fig. 3) with no relationship between manual 

and automatic counts (F1,4 = 0.05, p = 0.834, R2 
= –0.23). In LBBG the semi-automatic process 
(SA) provided an average agreement of 70.8 ± 
4.8% (48–81%, Fig. 3), and a positive relation-
ship between manual and automatic counts (F1,4 
= 25.13, p < 0.007, R2 = 0.83) .

3.2 Supervised classification (RGB+TIR)

The addition of a TIR camera to the semi-auto-
matic counting method reduced the total number 
of candidates chosen by the supervised classifica-
tion by 39.4 ± 8.8% (t5 = 2.69, p = 0.04; Fig. 4A). 
However, the addition of the thermal band led to 
a reduction in the mean agreement from 88.9 ± 
3.6% in the RGB imagery to 82.2 ± 5.4% (t5 = 
3.22, p = 0.02; Fig. 4B).

3.3 Factors affecting the classification 

The accuracy of the semi-automatic counting 
method and the relation between manual and 

Fig. 3. Comparison of counts of gulls with the automatic method (AT, light green) and the semi-automatic method 
(SA, dark green) with the manual counts for Herring Gull (left) and Lesser Black-backed Gull (right). The black line 
represents a 100% agreement with the manual count, whereas the dark green dashed line represents the mean 
agreement for the SA method (96% for the Herring Gull; 71% for the Lesser Black-backed Gull), and the light green 
dashed line represents the mean agreement for the AT method (109% for Herring Gull; Lesser Black-backed Gull not 
represented). Bars presented with an asterisk (*) represent values higher than 125% of the manual counts. The data 
for this figure was obtained from the fixed wing UAV flight in 2018 at 50 m altitude.
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semi-automatic counts varied with the height 
from which photos were taken (Table 1, Fig. 
5). For the 50 m flight, the mean agreement of 
the HG counts was 93.0 ± 3.5% (75–104%), 
and the relationship between the manual counts 
and the semi-automatic counts was positive and 
highly significant (F1,4 = 142.4, p < 0.001, R2 = 
0.96). The mean agreement for the LBBG was 
markedly lower, with a mean value of 76.9 ± 
6.2% (59–98%), but the relationship with the 
manual counts was still positive and significant 
(F1,4 = 28.5, p = 0.003, R2 = 0.82). For the 20 
m flight with a high quality camera, the mean 
agreement in detecting HG increased to an 
average of 97.7 ± 1.1% (92–100%; F1,4 = 1,129, 
p < 0.001, R2 = 0.99), and for the LBBG the 
mean agreement increased to 94.8 ± 1.8% (88–
100%). For the 15 m flight with a low quality 
camera, the mean agreement in detecting HG 
remained unchanged (97.7 ± 1.3%, 91–101%; 
F1,4 = 731, p < 0.001, R2 = 0.99), whereas the 
detection of LBBG dropped significantly to an 
average of 74.8 ± 4.2% (57–88%), while still 
presenting a strong positive correlation with 
the manual counts (F1,4 = 126.4, p < 0.001, R2 
= 0.95).

4. Discussion

The semi-automatic method based on Rush et 
al. (2018) for counting individuals proved to 
be efficient for one of our studied species, the 
Herring Gull (HG). For this species, we obtained 
similar mean agreement levels (~ 96%) as Rush et 
al. (2018) (Fig. 3). The precision of detection of 
the other study species, the Lesser Black-backed 
Gull (LBBG), corresponded to 71% of those 
present. One of the reasons for this low accuracy 
is the black back combined with the species’ pref-
erence for nesting in more densely vegetated areas 
(Coulson 2019) and the low spectral resolution of 
the camera at 50 m height. Pixels corresponding 
to the black backs of the gulls were frequently 
not differentiated from other dark areas in the 
picture (e.g., shadows or dark patches) making 
its detection by the non-specificity of the training 
sample more difficult (cf. Burke et al. 2019). 

In order to improve the detection of  
inconspicuous species in our collected imagery, 
and as a proof-of-concept, we added a thermal 
band to our sensors. We predicted a reduction in 
the selection of false polygons resulting from the 
addition of an independent extra layer exclusively 

Fig. 4. A) Amount of candidates (e.g., noise) in% of number of individuals of LBBG recorded by the manual counts 
for the method using only RGB imagery (blue), and using a combination of RGB and TIR imagery (red). B) Semi-
automatic counting mean agreement for the RGB imagery (blue), and for the combination of RGB and TIR imagery 
(red) with the manual counts of LBBG individuals. The data for this figure was obtained from the DJI Matrice 210 flight 
in 2019 at 50 m altitude.
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containing heat signatures. Although results from 
50 m altitude showed that combining RGB with 
TIR imagery reduced the final mean agreement 
by ~ 6%, these results should not be interpreted 
as demonstrating the inefficiency of using mul-
tispectral cameras. The drop in accuracy was 
most likely linked to a reduction in the quality 
of the automatic output (particularly from the 
false positives that generated up to 10 times 
more polygons than there were real gulls in the 
image, i.e., generating excess noise). In other 
words, at this height, where the accuracy of the 
counting method is low due to reduced imagery 
resolution, a reduction in quality of the automatic 
output may reduce true positives, reducing overall 

accuracy. Nevertheless, we obtained a reduction 
of 40% among the false positives, which in itself  
represents a major achievement at this level of 
image resolution, and opens the door for further 
testing at lower heights and increased thermal 
sensor quality where most of the false positives 
errors could be eliminated (Chabot et al. 2019; 
Lee et al. 2019). Equally, thermal infrared cameras 
continue to be expensive, the sensors have low 
resolution, and data processing creates software 
and hardware challenges (Kays et al. 2019, 
Scholten et al. 2019). In our case, we obtained 
a final resolution of 1.20 cm/px for the RGB 
imagery compared to 7.10 cm/px for TIR imagery 
from the same drone platform. Furthermore, the 

Fig. 5. Linear regression between the manual counts of the test areas from the UAV orthomosaic and counts conducted 
by the semi-automatic (SA) methods in the 2019 flights for Herring Gull and Lesser Black-backed Gull. The black line 
represents a 1:1 relation between counts, whereas the coloured lines represent the adjusted R-square of the model for 
each of the flying heights: 15 m (red), 20 m (green) and 50 m (blue). The colored dots represent each of the test areas 
per flying height (n=7). The data for this figure was obtained from the DJI Matrice 210 and DJI Phantom 4 Pro flights 
in 2019 at 15, 20 and 50 m altitude.

    50 m     20 m     15 m  

Species Agreement    R2    p Agreement    R2    p Agreement    R2    p

HG 93.0 ± 3.5%    0.96 < 0.001 97.7 ± 1.1%    0.99 < 0.001 97.7 ± 1.3%    0.99 < 0.001

LBBG 76.9 ± 6.2%    0.82    0.003 94.8 ± 1.8%    0.99 < 0.001 74.8 ± 4.2%    0.95 < 0.001

Table 1. Percentage of agreement of the semi-automatic method relative to the manual counts at the different heights 
for Herring Gull (HG) and Lesser Black-backed Gull (LBBG). The Adj R² shows the correlation between these two 
counts. Number of transects = 7. The drone DJI Matrice 210 conducted flights at 50 and 20 m, whereas DJI Phantom 
4 Pro flew at 15 m. 
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RGB/TIR imagery did not spatially match 100% 
when overlaid, necessitating more sophisticated 
image processing to improve accurate overlay 
matching as well as improved spectral resolution 
to improve thermal utility.

Drone survey is more efficient, cheaper and 
allows access to areas otherwise impossible 
(Chabot & Francis 2016, Brisson-Curadeau et al. 
2017, Han et al. 2017, Afán et al. 2018). However, 
such advantages also come with some limitations, 
such as battery life and the need for high quality 
imagery. These constraints present the researcher 
with a trade-off between the extent of the area to 
be covered and the quality of the images: flying 
higher allows coverage of greater areas at the 
same battery power, but costs in terms of the 
spatial resolution of the images. We found that 
flying at different heights (50 m, 20 m, and 15 m) 
and with different cameras had a huge impact on 
the quality of the pictures and thus the precision of 
the semi-automatic counting method (Fig. 5).

Flying at 50 m was more energy efficient than 
flying at 20 m, provided the same camera is used, 
but was far less accurate in detecting breeding 
gulls. Even with a faster processing time of the 
imagery by flying with the sensor at 50 m, the 
20 m flight showed an increase of ~ 4% in the 
agreement with the manual counts for semi-au-
tomatic HG detection, and of ~ 20% for LBBG 
detection. Flying lower demonstrably increased 
accuracy, especially when detecting less conspic-
uous birds (such as the LBBG). System require-
ments will vary depending on focal species and 
background characteristics. High altitude drone 
monitoring of conspicuous animals (e.g., Mute 
Swans Cygnus olor (Clausen et al. 2020) against a 
dark water background) is likely to reduce image 
processing time and increase area coverage per 
battery cycle without loss of accuracy compared 
to more cryptic species with complex backdrop 
environments. In addition, we could observe an 
effect of the size of the sample of the colony on 
the semi-automatic output when flying at 50 m 
for the HG, but not when flying at 15 and 20 m  
(Fig. 5). A similar trend was observed for the 
LBBG, especially when the camera quality was 
lower, and the flying height was higher. This un-
derlines the importance of using adequate quality 
cameras and specific flying heights regarding the 
target species, to avoid flaws in the semi-automatic 

counting methods and achieve their maximum  
efficiency. Under all circumstances, we 
recommend thorough literature reviews before 
conducting flights under given conditions, and not 
to fly below 15 m to prevent unnecessary distur-
bance to breeding birds (cf. Grenzdörffer 2013, 
Vas et al. 2015). Birds unattached to nests will 
usually show far longer escape distances to drones 
than breeding birds, so drone monitoring at higher 
altitudes is recommended for studies undertaken 
outside the breeding season (Holm et al. 2018).

Regarding photographic image quality, we 
were unable to perceive detection probability  
differences for HG when comparing the DJI 
Matrice 210 (Zenmuse X5S camera, considered 
the better quality camera) with a DJI Phantom 4 
Pro. Both averaged an agreement of 97%, with 
a correlation between the number of manual and 
semi-automatic counts of 0.99 (Table 1). However, 
the mean agreement when identifying LBBG 
dropped significantly from ~ 95% when using the 
high quality camera (Matrice 210) to ~ 75% when 
using the lower quality camera (Phantom Pro 4). 
This drop in accuracy confirms the value of using 
better quality cameras, especially for more cryptic 
species, because the Phantom 4 Pro generated 
more noise for the less conspicuous species, 
despite lower flight height and equivalent spatial 
resolution (0.5 cm/px). High megapixel ratings on 
smaller cameras (e.g., the standard camera on the 
DJI Phantom Pro) often result in greater noise and 
inferior image quality. We therefore recommend 
surveyors to study the habitat distribution and 
breeding behaviour of their focal species, as this 
may permit the use of cheaper equipment while 
achieving similar levels of accuracy. 

In summary, the semi-automated counting 
method proposed by Rush et al. (2018) applied in 
this study proved an accurate and fast solution to 
reduce the manual handling of drone imagery in 
the case of identifying HG. However, we found 
major differences in accuracy between survey 
platforms, especially for the less conspicuous 
LBBG, which lead us to recommend forward 
planning and testing of equipment in advance 
in relation to the specific features of a proposed 
case study with regard to securing effective 
data collection. In this paper, we underline the  
importance of considering the study species and 
test the UAV equipment for the specific purpose 
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before conducting a full survey, as many factors 
can influence the success and efficiency of  
monitoring using drones, including associated 
costs of the equipment and impacts on individuals 
in terms of disturbance, especially when outside 
the breeding season.
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Pesivien lokkien laskenta lennokien avulla: 
kameran laatu ja lentokorkeus vaikuttavat 
puoliautomaattisen laskentamenetelmän 
tarkkuuteen

Kun laajojen merilintukolonioiden laskemiseen 
käytetään lennokkeja, voidaan välttää monia 
perinteiseen laskentaan liittyviä ongelmia, mutta 
kuvien manuaalinen käsittely on kallista ja 
haastavaa. Puoliautomaattisten kuva-analyysien 
käyttäminen edellyttää kuvalta hyvää spatiaalista 
resoluutiota: silloin täytyy valita optimaalinen 
tasapaino suhteellisen pienen alueen (matala len-
tokorkeus)/hyvän resoluution ja laajemman alueen 
(korkea lentokorkeus)/huonomman resoluution 

välillä. Yksittäisen linnun havaitsemisen todennä-
köisyyttä lisää se, että kontrasti linnun ja taustan 
välillä on suuri. Tätä voidaan parantaa esimerkiksi 
lämpösensoreita käyttämällä. Tutkimuksessa 
käytettiin puoliautomaattista analyysimenetel-
mää lennokkien ottamien monispektrikuvien 
analyysiin harmaa- ja selkälokkikolonian laske-
miseen. Tietokone ohjelmoitiin  havaitsemaan 
eri korkeuksista ja eri kameroilla otettuja kuvia 
niiden spektrien perusteella. Puoliautomaattisen 
laskennan tulokset olivat lähimpänä manuaalista 
laskentatulosta kun lentokorkeus oli matalin (20 
m) ja kameran resoluution suurin (97.7 ± 1.1 har-
maalokilla, 94.8 ± 1.8% selkälokille). Tarkkuus 
vaihteli myös eri ajojen välillä: paras tulos saatiin 
matalalla lennettäessä, laadukkaalla kameralla, ja 
lämpösensorin käyttäminen vähensi taustamelua 
noin 40%.
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Appendix

Appendix I. Summary of sampling protocols denoting UAV type, camera  type, flight date, flight time, flight height, 
image resolution and number of battery changes.

UAV type Camera type Flight date &  
time of day

Flight time 
(min.)

Flight 
height (m) Image resolution Battery 

changes

Event 38 model 
E384

Sony IL CE-QXI 30 May 2018 150 50 1.20 cm/px (RGB) 1

DJI Matrice 210 DJI Zenmuse X5S 14 May 2019, 
17:33–18:47

74 20 0.53 cm/px 2

DJI Matrice 210 DJI Zenmuse XT2 TIR 15 May 2019,  
04:56–06:42

106 50 1.20 cm/px (RGB), 
7.10 cm/px (TIR)

4

DJI Phantom 4 Pro DJI Phantom 4 Pro 
standard

15 May 2019,  
07:14–09:52

158 15 0.53 cm/px 5


