Temporal increase in migratoriness and increasing male bias among residents in partially migrating Swedish sparrowhawks Accipiter nisus
DOI:
https://doi.org/10.51812/of.122172Keywords:
migration, life history, climate change, partial migration, reversed size dimorphismAbstract
Partial migrants have populations consisting of both migratory and resident individuals. These migrants and residents experience unequal ecological conditions during winter and the underlying factors driving their decision to stay on their breeding grounds or to migrate remain debated—both from the viewpoint of populations and individuals. Here, we studied partial migration in a small raptor, the Eurasian Sparrowhawk (Accipiter nisus), from two different but interconnected perspectives: 1) explaining the patterns and variation in the ratio of migrants to residents (migratoriness) at the population level and 2) revealing how age and sex may affect the individual decision to be migratory or resident. We used citizen observation data over four decades to explore the temporal and spatial variation in the age and sex ratio of wintering resident sparrowhawks in Sweden. We found that the migratoriness unexpectedly increased with higher annual temperatures and showed long-term trend across the study period. Also, this migrant-to-resident ratio increased with smaller winter prey abundance. The average winter sex ratio was male-biased and became increasingly so over the years. We suggest that residency benefits territory-establishing males as early presence gives a competitive advantage in obtaining high-quality territories. Moreover, the distribution of overwintering individuals (regardless of sex) moved gradually northwards as the winter progressed, suggesting that smaller-scale migration occurs among the resident fraction of the population. These results provide suggestions for the underlying drivers and regulation of partial migration.
References
Able, K.P. & Belthoff, J.R. 1998: Rapid ‘evolution’ of migratory behaviour in the introduced house finch of eastern North America. — Proceedings of the Royal Society of London B: Biological Sciences 265: 2063–2071. https://doi.org/10.1098/rspb.1998.0541
Acker, P., Daunt, F., Wanless, S., Burthe, S.J., Newell, M.A., Harris, M.P., Grist, H., Sturgeon, J., Swann, R.L., Gunn, C., Payo-Payo, A. & Reid, J.M. 2021: Strong survival selection on seasonal migration versus residence induced by extreme climatic events. — Journal of Animal Ecology 90: 796–808. https://doi.org/10.1111/1365-2656.13410
Ambrosini, R., Cuervo, J.J., du Feu, C., Fiedler, W., Musitelli, F., Rubolini, D., Sicurella, B., Spina, F., Saino, N. & Møller, A.P. 2016: Migratory connectivity and effects of winter temperatures on migratory behaviour of the European robin Erithacus rubecula: a continent–wide analysis. — Journal of Animal Ecology 85: 749–760. https://doi.org/10.1111/1365-2656.12497
Arnold, T.W. 2010: Uninformative Parameters and Model Selection Using Akaike’s Information Criterion. — The Journal of Wildlife Management 74: 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x
Bauer, H.G. & Berthold, P. 1997: Die Brutvogel Mittel-europas. Bestand und Gefährdung. — Aula-Verlag, Wiesbaden. (In German)
Belthoff, J.R. & Gauthreaux, S.A. 1991: Partial Migration and Differential Winter Distribution of House Finches in the Eastern United States. — The Condor 93: 374–382. https://doi.org/10.2307/1368953
Berthold, P. 1988: Evolutionary aspects of migratory behavior in European warblers. — Journal of Evolutionary Biology 1: 195–209. https://doi.org/10.1046/j.1420-9101.1998.1030195.x
Berthold, P. 1996: Control of Bird Migration. — The Auk 114(3): 534–535. https://doi.org/10.2307/4089262
Berthold, P. 1999. A comprehensive theory for the evolution, control and adaptability of avian migration. — Ostrich 70: 1–11. https://doi.org/10.1080/00306525.1999.9639744
Berthold, P. 2001: Bird migration: a general survey. — Oxford University Press, Oxford
Berthold, P. & Querner, U. 1982: Genetic basis of moult, wing length, and body weight in a migratory bird species, Sylvia atricapilla. — Experientia 38: 801–802. https://doi.org/10.1007/BF01972279
Biebach, H. 1983: Genetic determination of partial migration in the European Robin (Erithacus rubecula). — The Auk 100: 601–606. https://doi.org/10.1093/auk/100.3.601
Boyle, W.A., Norris, D. R. & Guglielmo, C. G. 2010: Storms drive altitudinal migration in a tropical bird. — Proceedings of the Royal Society of London B: Biological Sciences 277: 2511–2519. https://doi.org/10.1098/rspb.2010.0344
Buchan, C., Gilroy, J.J., Catry, I. & Franco, A.M.A. 2020: Fitness consequences of different migratory strategies in partially migratory populations: a multi-taxa meta-analysis. — Journal of Animal Ecology 89: 678–690. https://doi.org/10.1111/1365-2656.13155
Chapman, B.B., Brönmark, C., Nillson, J.Å. & Hansson, L.A. 2011: The ecology and evolution of partial migration. — Oikos 120: 1764–1775. https://doi.org/10.1111/j.1600-0706.2011.20131.x
Cristol, D.A., Baker, M.B & Carbone, C. 1999: Differential Migration Revisited. — In Current Ornithology vol 15 (ed. Nolan, V., Ketterson, E.D. & Thompson, C.F.). Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4901-4_2
Daan, S., Masman, D. & Groenewold, A. 1990: Avian basal metabolic rates: their association with body composition and energy expenditure in nature. — The American Journal of Physiology 259: 333–340. https://doi.org/10.1152/ajpregu.1990.259.2.r333
Deshpande, P., Lehikoinen, P., Thorogood, R. & Lehikoinen, A. 2022: Snow depth drives habitat selection by overwintering birds in built-up areas, farmlands and forests. — Journal of Biogeography 49: 630–639. https://doi.org/10.1111/jbi.14326
de Zoeten, T. & Pulido, F. 2020: How migratory populations become resident. — Proceedings of the Royal Society of London B: Biological Sciences B 287: 20193011. https://doi.org/10.1098/rspb.2019.3011
Dunning Jr., J.B. (ed) 2008: CRC handbook of avian body masses. — CRC press, London. https://doi.org/10.1201/9781420064452
Fudickar, A.M., Schmidt, A., Hau, M., Quetting, M. & Partecke, J. 2013: Female‐biased obligate strategies in a partially migratory population. — Journal of Animal Ecology 82: 863–871. https://doi.org/10.1111/1365-2656.12052
Gauthreaux, S.A. 1982: The ecology and evolution of avian migration systems. — Avian Biology 6: 93–168.
Gow, E.A. & Wiebe, K.L. 2014: Males migrate farther than females in a differential migrant: an examination of the fasting endurance hypothesis. — Royal Society Open Science 1: 140346. https://doi.org/10.1098/rsos.140346
Grayson, K.L. & Wilbur, H.M. 2009: Sex- and context-dependent migration in a pond-breeding amphibian. — Ecology 90: 306–311.
Green, M. & Lindström, Å. 2014: Övervakning av fåglarnas populationsutveckling. Årsrapport för 2013. — Institute of Biology, University of Lund. (In Swedish)
Grist, H., Daunt, F., Wanless, S., Burthe, S.J., Newell, M.A., Harris, M.P. & Reid, J.M. 2017: Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird. — Journal of Animal Ecology 86: 1010–1021. https://doi.org/10.1111/1365-2656.12691
Hegemann, A., Marra, P.P. & Tieleman, B.I. 2015: Causes and consequences of partial migration in a passerine bird. — The American Naturalist 186: 531–546. https://doi.org/10.1086/682667
Karlsson, L. 2004: Wings over Falsterbo. — Falsterbo Bird Observatory, Falsterbo.
Ketterson, E.D. & Nolan Jr, V. 1976: Geographic
variation and its climatic correlates in the sex ratio of eastern–wintering Dark–eyed Juncos (Junco hyemalis hyemalis). — Ecology 57: 679–693. https://doi.org/10.2307/1936182
Kjellén, N. 1992: Differential timing of autumn migration between sex and age groups in raptors at Falsterbo, Sweden. — Ornis Scandinavica 23: 420–434. https://doi.org/10.2307/3676673
Kjellén, N. 2019: Migration counts at Falsterbo, Sweden. — Bird Census News 32: 27–37. Retrieved from
https://www.ebcc.info/wp-content/uploads/2020/06/4-kjellen-32-1-2.pdf
Kokko, H. 1999: Competition for early arrival in migratory birds. — Journal of Animal Ecology 68: 940–950. https://doi.org/10.1046/j.1365-2656.1999.00343.x
Kokko, H. & Lundberg, P. 2001: Dispersal, migration, and offspring retention in saturated habitats. — The American Naturalist 157: 188–202. http://dx.doi.org/10.1086/318632
Kokko, H., Gunnarson, T.G., Morrell, L.J. & Gill, J.A. 2006: Why do female migratory birds arrive later than males? — Journal of Animal Ecology 75: 1293–1303. https://doi.org/10.1111/j.1365-2656.2006.01151.x
Lack, D. 1943: The problem of partial migration. — British Birds 37: 122–130.
Lack, D. 1944: The problem of partial migration. — British Birds 37: 143–150.
Lehikoinen, A. 2011: Advanced autumn migration of sparrowhawk has increased the Predation risk of long-distance migrants in Finland. — PLoS ONE 6: e20001. https://doi.org/10.1371/journal.pone.0020001
Lehikoinen, A., Hokkanen, T. & Lokki, H. 2011: Young
and female-biased irruptions in pygmy owls
Glaucidium passerinum in southern Finland. — Journal of Avian Biology 42: 564–569. https://doi.org/10.1111/j.1600-048X.2011.05461.x
Lehikoinen, A., Ekroos, J., Piha, M., Seimola, T., Tirri, I.S, Velmala, W. & Vähätalo, A. 2014: Muuton ajoittuminen eri ikäluokilla ja sukupuolilla Hangon lintuasemalla rengastuksen perusteella: Osa 1: syksyiset ei-varpuslinnut. — Tringa 41: 30–53. (In Finnish with English summary)
Lehikoinen, A., Lindén, A., Karlsson, M., Andersson, A., Crewe, T.L., Dunn, ... & Tjørnløv, R. S. 2019: Phenology of the avian spring migratory passage in Europe and North America: asymmetric advancement in time and increase in duration. — Ecological Indicators 101: 985–991. https://doi.org/10.1016/j.ecolind.2019.01.083
Lindén, A., Lehikoinen, A., Hokkanen, T. & Väisänen, R.A. 2011: Modelling irruptions and population dynamics of the great spotted woodpecker–joint effects of density and cone crops. — Oikos 120: 1065–1075. http://dx.doi.org/10.1111/j.1600-0706.2010.18970.x
Lundberg, P. 1985: Dominance behaviour, body weight and fat variations, and partial migration in European blackbirds Turdus merula. — Behavioral Ecology and Sociobiology 17: 185–189. https://doi.org/10.1007/BF00299250
Lundberg, P. 1988: The evolution of partial migration in birds. — Trends in Ecology & Evolution 3: 172–175. https://doi.org/10.1016/0169-5347(88)90035-3
Lundblad, C.G. & Conway, C.J. 2020: Testing four hypotheses to explain partial migration: balancing reproductive benefits with limits to fasting endurance. — Behavioral Ecology and Sociobiology 74: 1–16. https://doi.org/10.1007/s00265-019-2796-3
Macdonald, C.A., McKinnon, E.A., Gilchrist, H.G. & Love, O.P. 2016: Cold-tolerance, and not earlier arrival on breeding grounds, explains why males winter further north in an Arctic-breeding songbird. — Journal of Avian Biology 47: 7–15. https://doi.org/10.1111/jav.00689
Main, I. G. 2002: Seasonal movements of Fennoscandian Blackbirds Turdus merula. — Ringing & Migration 21: 65–74.
Mayr, E. 1926: Die ausbreitung des Girlitz (Serinus
canaria serinus L.). — Journal für Ornithologie
: 571–671. (In German)
Meller, K., Vähätalo, A.V., Hokkanen, T., Rintala, J., Piha, M. & Lehikoinen, A. 2016: Interannual variation and long–term trends in proportions of resident individuals in partially migratory birds. — Journal of Animal Ecology 85: 570–580. https://doi.org/10.1111/1365-2656.12486
Møller, A.P., Jokimäki, J., Skorka, P. & Tryjanowski, P. 2014: Loss of migration and urbanization in birds: a case study of the blackbird (Turdus merula). — Oecologia 174: 1019–1027. https://doi.org/10.1007/s00442-014-2953-3
Newton, I. 1986: The Sparrowhawk. — T & Poyser, Calton.
Newton, I. 2008: The migration ecology of birds. — Academic Press, Elsevier, London.
Newton, I. & Dale, L. 1996: Relationship between migration and latitude among west European birds. — Journal of Animal Ecology 65: 137–146. https://doi.org/10.2307/5716
Nilsson, A.L., Lindstroem, A., Jonzén, N., Nilsson, S.G.
& Karlsson, L. 2006: The effect of climate change on partial migration–the blue tit paradox. — Global Change Biology 12: 2014–2022. https://doi.org/10.1111/j.1365-2486.2006.01237.x
Otterbeck, A., Lindén, A. & Roualet, É. 2015: Advantage of specialism: reproductive output is related to prey choice in a small raptor. — Oecologia 179: 129–137. http://dx.doi.org/10.1007/s00442-015-3320-8
Otterbeck, A., Selås, V., Nielsen, J. T., Roualét, E. & Lindén, A. 2019: The paradox of nest reuse: early breeding benefits reproduction, but nest reuse increases nest predation risk. — Oecologia 190: 559–568. https://doi.org/10.1007/s00442-019-04436-7
Ottvall, R., Edenius, L., Elmberg, J., Engström, H., Green, M., Holmqvist, N., Lindström, Å., Tjernberg, M. & Pärt, T. 2008: Populationstrender för fågelarter som häckar i Sverige. Report 5813. — Naturvårdsverket, Stockholm. (In Swedish)
Pakanen, V.M., Ahonen, E., Hohtola, E. & Rytkönen, S. 2018: Northward expanding resident species benefit from warming winters through increased foraging rates and predator vigilance. — Oecologia 188: 991–999. https://doi.org/10.1007/s00442-018-4271-7
Pannekoek, J. & Van Strien, A. 2005: TRIM 3 manual (Trends &indices for monitoring data). — JM Voorburg, Statistics Netherlands, The Netherlands.
Partecke, J. & Gwinner, E. 2007: Increased sedentariness in European Blackbird following urbanization: a consequence of local adaptation? — Ecology 88: 882–890. https://doi.org/10.1890/06-1105
Pulido, F. 2011: Evolutionary genetics of partial
migration – the threshold model of migration
revis(it)ed. — Oikos 120: 1776–1783. https://doi.org/10.1111/j.1600-0706.2011.19844.x
Pulido, F. & Berthold, P. 2010: Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. — Proceedings of the National Academy of Sciences of the United States of America 107: 7341– 7346. https://doi.org/10.1073/pnas.0910361107
R Core Team 2018: R: A language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna, Austria.
Risch, M. & Brinkhof, M. W. G. 2002: Sex ratios of Sparrowhawk (Accipiter nisus) broods: the importance of age in males. — Ornis Fennica 79: 49–59.
Robb, G.N., Mcdonald, R.A., Chamberlain, D.E. & Bearhop, S. 2008a: Food for thought: supplementary feeding as a driver of ecological change in avian populations. — Frontiers in Ecology and the Environment 6: 476–484. http://dx.doi.org/10.1890/060152
Robb, G.N., Mcdonald, R.A., Chamberlain, D.E., Reynolds, S.J., Harrison, T.J. & Bearhop, S. 2008b: Winter feeding of birds increases productivity in the subsequent breeding season. — Biology Letters 4: 220–223. https://doi.org/10.1098/rsbl.2007.0622
Rubolini, D., Møller, A.P., Rainio, K. & Lehikoinen, E. 2007: Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. — Climate Research 35: 135–146. http://dx.doi.org/10.3354/cr00720
Schütz, C. & Schulze, C.H. 2018: Park size and prey density limit occurrence of Eurasian Sparrowhawks in urban parks during winter. — Avian Research 9: 30. https://doi.org/10.1186/s40657-018-0122-9
Schwabl, H. 1983: Ausprägung und Bedeutung des Teilzugverhaltens einer südwestdeutschen Population der Amsel Turdus merula. — Journal für Ornithologie 124: 101–116. (In German)
Silverin, B., Viebke, P.A. & Westin, J. 1989: Hormonal correlates of migration and territorial behavior in juvenile willow tits during autumn. — General and Comparative Endocrinology 75(1): 148–156. https://doi.org/10.1016/0016-6480(89)90020-8
Smith, H.G. & Nilsson, J.Å. 1987: Intraspecific variation in migratory pattern of a partial migrant, the blue tit (Parus caeruleus): an evaluation of different hypotheses. — The Auk 104: 109–115. https://doi.org/10.2307/4087239
Somveille, M., Manica, A., Butchart, S.H.M. & Rodrigues, A.S.L. 2013: Mapping global diversity patterns for migratory birds. — PLoS ONE 8: e70907. https://doi.org/10.1371/journal.pone.0070907
Terrill, S.B. & Able, K.P. 1988: Bird Migration Terminology. — The Auk 105: 205–206. https://doi.org/10.1093/auk/105.1.205
Usui, T., Butchart, S.H.M. & Phillimore, A.B. 2017: Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis. — Journal of Avian Ecology 86: 250–261. https://doi.org/10.1111/1365-2656.12612
Van Vliet, J., Musters, C.J.M. & Ter Keurs, W.J. 2009: Changes in migration behaviour of Blackbirds Turdus merula from the Netherlands. — Bird Study 56: 276–281. https://doi.org/10.1080/00063650902792148
Välimäki, K., Lindén, A. & Lehikoinen, A. 2016: Velocity of density shifts in Finnish land bird species depends on their migration ecology and body mass. — Oecologia 181: 313–321. https://doi.org/10.1007/s00442-015-3525-x
Visser, M.E. & Gienapp, P. 2019: Evolutionary and demographic consequences of phenological mismatches. — Nature Ecology & Evolution 3: 879–885. https://doi.org/10.1038/s41559-019-0880-8
Virkkala, R. & Lehikoinen, A. 2014: North by north-west: climate change and directions of density shifts in birds. — Global Change Biology 22: 1121–1129. https://doi.org/10.1111/gcb.13150
Wood, S.N. 2017: Generalized Additive Models: An Introduction with R (2nd edition). — Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781315370279
Wood, S. & Scheipl, F. 2020: gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’. R package version 0.2-6. Accessed at https://CRAN.R-project.org/package=gamm4/
Zúñiga, D., Gager, Y., Kokko, H., Fudickar, A. M., Schmidt, A., Naef-Daenzer, B., Wikelski, M. & Partecke, J. 2017: Migration confers winter survival benefits in a partially migratory songbird. — eLife 6: e28123. https://doi.org/10.7554/eLife.28123
Downloads
Additional Files
Published
Versions
- 2024-12-18 (2)
- 2024-12-13 (1)
Issue
Section
License
Copyright (c) 2022 Andreas Otterbeck, Andreas Lindén

This work is licensed under a Creative Commons Attribution 4.0 International License.


